Кодирование и шифрование информации

Реферат

То, что информация имеет ценность, люди осознали очень давно — недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись — умение составлять сообщения таким образом, чтобы его смысл был недоступен никому, кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и — конечно же — разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом — информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит — воруют и подделывают — и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно-обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации. Одним словом, возникновение индустрии обработки информации с железной необходимостью привело к возникновению индустрии средств защиты информации.

Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения. Образно говоря, криптографические методы строят барьер между защищаемой информацией и реальным или потенциальным злоумышленником из самой информации. Конечно, под криптографической защитой в первую очередь — так уж сложилось исторически — подразумевается шифрование данных. Раньше, когда эта операция выполнялось человеком вручную или с использованием различных приспособлений, и при посольствах содержались многолюдные отделы шифровальщиков, развитие криптографии сдерживалось проблемой реализации шифров, ведь придумать можно было все что угодно, но как это реализовать.

7 стр., 3387 слов

Защита информации в информационных системах

... 2. Методы защиты информации Под информационной безопасностью Российской Федерации (информационной системы) подразумевается техника защиты информации от преднамеренного или случайного несанкционированного доступа и нанесения тем самым вреда нормальному процессу документооборота и обмена данными в системе, а ...

1. Кодирование

Естественные языки обладают большой избыточностью для экономии памяти, объем которой ограничен, имеет смысл ликвидировать избыточность текста, существуют несколько способов:

1. Переход от естественных обозначений к более компактным.

2. Подавление повторяющихся символов.

3. Кодирование часто используемых элементов данных.

4. Посимвольное кодирование.

2. Кодирование двоичным кодом

Для автоматизации работы с данными, относящимися к различным типам очень важно унифицировать их форму представления — для этого обычно используется приём кодирования, т.е. выражение данных одного типа через данные другого типа. Естественные человеческие языки — системы кодирования понятий для выражения мыслей посредством речи. К языкам близко примыкают азбуки — системы кодирования компонентов языка с помощью графических символов.

Своя системы существует и в вычислительной технике — она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называют двоичными цифрами, по-английски — binary digit или сокращённо bit (бит).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, чёрное или белое, истина или ложь и т.п.).

Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия. Тремя битами можно закодировать восемь различных значений.

3. Кодирование целых и действительных чисел

Целые числа кодируются двоичным кодом достаточно просто — необходимо взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, записанная справа налево вместе с последним частным, и образует двоичный аналог десятичного числа.

Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит).

16 бит позволяют закодировать целые числа от 0 до 65535, а 24 — уже более 16,5 миллионов различных значений.

Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразовывают в нормализованную форму:

3,1414926 = 0,31415926 10 1

300 000 = 0,3 10 6

Первая часть числа называется мантиссой, а вторая — характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики.

4. Кодирование текстовых данных

Если каждому символу алфавита сопоставить определённое целое число, то с помощью двоичного кода можно кодировать текстовую информацию. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Это хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы.

Технически это выглядит очень просто, однако всегда существовали достаточно веские организационные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее время вызваны, наоборот, изобилием одновременно действующих и противоречивых стандартов. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, а это пока невозможно из-за противоречий между символами национальных алфавитов, а также противоречий корпоративного характера.

10 стр., 4999 слов

Операции с данными

... процесса данные преобразуются из одного вида в другой с помощью методов. Обработка данных включает в себя множество различных операций. По ... данных, обрабатываемых компьютером № Типы данных Операции 1 Числа (числовые данные) Все арифметические операции 2 Тексты(символьные данные) Замещение, вставка, удаление символов, сравнение, конкатенация строк 3 Логические(бинарные) данные Все логические операции ...

Для английского языка, захватившего де-факто нишу международного средства общения, противоречия уже сняты. Институт стандартизации США ввёл в действие систему кодирования ASCII (American Standard Code for Information Interchange — стандартный код информационного обмена США).

В системе ASCII закреплены две таблицы кодирования базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств. В этой области размещаются управляющие коды, которым не соответствуют ни какие символы языков. Начиная с 32 по 127 код размещены коды символов английского алфавита, знаков препинания, арифметических действий и некоторых вспомогательных символов.

Кодировка символов русского языка, известная как кодировка Windows-1251, была введена «извне» — компанией Microsoft, но, учитывая широкое распространение операционных систем и других продуктов этой компании в России, она глубоко закрепилась и нашла широкое распространение.

Другая распространённая кодировка носит название КОИ-8 (код обмена информацией, восьмизначный) — её происхождение относится к временам Действия Совета Экономической Взаимопомощи государств Восточной Европы. Сегодня кодировка КОИ — 8 имеет широкое распространение в компьютерных сетях на территории России и в российском секторе Интернета.

Международный стандарт, в котором предусмотрена кодировка символов русского языка, носит названия ISO (International Standard Organization — Международный институт стандартизации).

На практике данная кодировка используется редко.

5. Универсальная система кодирования текстовых данных

Если проанализировать организационные трудности, связанные с созданием единой системы кодирования текстовых данных, то можно прийти к выводу, что они вызваны ограниченным набором кодов (256).

В то же время, очевидно, что если, кодировать символы не восьмиразрядными двоичными числами, а числами с большим разрядом то и диапазон возможных значений кодов станет на много больше. Такая система, основанная на 16-разрядном кодировании символов, получила название универсальной — UNICODE. Шестнадцать разрядов позволяют обеспечить уникальные коды для 65 536 различных символов — этого поля вполне достаточно для размещения в одной таблице символов большинства языков планеты.

Несмотря на тривиальную очевидность такого подхода, простой механический переход на данную систему долгое время сдерживался из-за недостатков ресурсов средств вычислительной техники (в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое длиннее).

Во второй половине 90-х годов технические средства достигли необходимого уровня обеспечения ресурсами, и сегодня мы наблюдаем постепенный перевод документов и программных средств на универсальную систему кодирования.

12 стр., 5664 слов

Кодирование информации

... специальное название - кодирование информации. Цель реферата: изучение теоретических аспектов применения систем кодирования информации. Задачи реферата: Узнать и изучить все способы кодирование информации; Выявить различные формы представления информации; Сделать выводы В данном реферате использована литература прошлых ...

6. Кодирование графических данных

Если рассмотреть с помощью увеличительного стекла чёрно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый растром. Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, то можно сказать, что растровое кодирование позволяет использовать двоичный код для представления графических данных. Общепринятым на сегодняшний день считается представление чёрно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа.

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основные цвета: красный (Red), (Green) и синий (Blue).

На практике считается, что любой цвет, видимый человеческим глазом, можно получить механического смешения этих трёх основных цветов. Такая система кодирования получила названия RGB по первым буквам основных цветов.

Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, т.е. цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно дополнительными цветами являются: голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow).

Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и жёлтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется ещё и четвёртая краска — чёрная (Black).

Поэтому данная система кодирования обозначается четырьмя буквами CMYK (чёрный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим также называется полноцветным.

Если уменьшить количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объём данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color.

При кодировании информации о цвете с помощью восьми бит данных можно передать только 256 оттенков. Такой метод кодирования цвета называется индексным.

кодирование шифрование информация

7. Кодирование звуковой информации

Приёмы и методы работы со звуковой информацией пришли в вычислительную технику наиболее поздно. К тому же, в отличие от числовых, текстовых и графических данных, у звукозаписей не было столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но среди них можно выделить два основных направления.

1. Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства — аналогово-цифровые преобразователи (АЦП).

29 стр., 14174 слов

Криптографические методы защиты информации

... шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра. Процесс криптографического закрытия данных ... защите информации. Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, ... принципиальное отличие кодирования от шифрования. Часто кодирование и шифрование считают одним ...

Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП).

При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код, поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.

2. Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания. Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

8. Шифрование

Шифрование — обратимое преобразование информации в целях сокрытия от неавторизованных лиц, с предоставлением, в это же время, авторизованным пользователям доступа к ней. Главным образом, шифрование служит задачей соблюдения конфиденциальности передаваемой информации. Важной особенностью любого алгоритма шифрования является использование ключа, который утверждает выбор конкретного преобразования из совокупности возможных для данного алгоритма.

В целом, шифрование состоит из двух составляющих— зашифрование и расшифрование.

С помощью шифрования обеспечиваются три состояния безопасности информации:

  • Конфиденциальность.

Шифрование используется для скрытия информации от неавторизованных пользователей при передаче или при хранении.

  • Целостность.

Шифрование используется для предотвращения изменения информации при передаче или хранении.

  • Идентифицируемость.

Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им.

Для того, чтобы прочитать зашифрованную информацию, принимающей стороне необходимы ключ и дешифратор (устройство, реализующее алгоритм расшифровывания).

Идея шифрования состоит в том, что злоумышленник, перехватив зашифрованные данные и не имея к ним ключа, не может ни прочитать, ни изменить передаваемую информацию. Кроме того, в современных криптосистемах (с открытым ключом) для шифрования, расшифрования данных могут использоваться разные ключи. Однако, с развитием криптоанализа, появились методики, позволяющие дешифровать закрытый текст без ключа. Они основаны на математическом анализе переданных данных.

7 стр., 3258 слов

Алгоритмы шифрования данных

... что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать ... режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит ...

9. Цели шифрования

Шифрование применяется для хранения важной информации в ненадёжных источниках и передачи её по незащищённым каналам связи. Такая передача данных представляет из себя два взаимно обратных процесса:

зашифрованию

расшифрования

Шифрование изначально использовалось только для передачи конфиденциальной информации. Однако впоследствии шифровать информацию начали с целью её хранения в ненадёжных источниках. Шифрование информации с целью её хранения применяется и сейчас, это позволяет избежать необходимости в физически защищённом хранилище [4][5] .

Шифром

В настоящий момент существует огромное количество методов шифрования. Главным образом эти методы делятся, в зависимости от структуры используемых ключей, на симметричные методы и асимметричные методы. Кроме того, методы шифрования могут обладать различной криптостойкостью и по-разному обрабатывать входные данные— блочные шифры и поточные шифры. Всеми этими методами, их созданием и анализом занимается наука криптография.

10. Методы шифрования, Симметричное шифрование

Асимметричное шифрование

Эти методы решают определенные задачи и обладают как достоинствами, так и недостатками. Конкретный выбор применяемого метода зависит от целей, с которыми информация подвергается шифрованию.

Симметричное шифрование

симметричные

Симметричные, а конкретнее, алфавитные алгоритмы шифрования были одними из первых алгоритмов [19] . Позднее было изобретено асимметричное шифрование, в котором ключи у собеседников разные.

Схема реализации

Задача. Есть два собеседника— Алиса и Боб, они хотят обмениваться конфиденциальной информацией.

  • Генерация ключа.

Боб (или Алиса) выбирает ключ шифрования и алгоритм (функции шифрования и расшифрования), затем посылает эту информацию Алисе (Бобу).

  • Шифрование и передача сообщения.

Алиса шифрует информацию с использованием полученного ключа .

И передает Бобу полученный шифротекст . То же самое делает Боб, если хочет отправить Алисе сообщение.

  • Расшифрование сообщения.

Боб(Алиса), с помощью того же ключа , расшифровывает шифротекст .

Недостатками симметричного шифрования является проблема передачи ключа собеседнику и невозможность установить подлинность или авторство текста. Поэтому, например, в основе технологии цифровой подписи лежат асимметричные схемы.

Асимметричное шифрование

В системах с открытым ключом используются два ключа— открытый и закрытый, связанные определенным математическим образом друг с другом. Открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для шифрования сообщения и для проверки ЭЦП. Для расшифровки сообщения и для генерации ЭЦП используется секретный ключ.

44 стр., 21597 слов

Доклад: Бизнес-план частной музыкальной школы ООО «Скрипичный ключ»

... выдачи в пользование музыкальных инструментов; частная музыкальная школа «Скрипичный ключ» постоянно открыта для любых ... музыкальных школ, 1 частная музыкальная школа «Цветы у ручья». В таблице 1 представлен конкурентный анализ организуемой частной школы «Скрипичный ключ»: услуга рынок музыкальный план ... предполагается расширить географию бизнеса, создавая новые филиалы школы в различных районах ...

Данная схема решает проблему симметричных схем, связанную с начальной передачей ключа другой стороне. Если в симметричных схемах злоумышленник перехватит ключ, то он сможет как «слушать», так и вносить правки в передаваемую информацию. В асимметричных системах другой стороне передается открытый ключ, который позволяет шифровать, но не расшифровывать информацию. Таким образом решается проблема симметричных систем, связанная с синхронизацией ключей.

Первыми исследователями, которые изобрели и раскрыли понятие шифрования с открытым кодом, были Уитфилд Диффи и Мартин Хеллман из Стэнфордского университета и Ральф Меркле из Калифорнийского университета в Беркли. В 1976 году их работа «Новые направления в современной криптографии» открыла новую область в криптографии, теперь известную как криптография с открытым ключом.

Схема реализации

Задача. Есть два собеседника— Алиса и Боб, Алиса хочет передавать Бобу конфиденциальную информацию.

  • Генерация ключевой пары.

Боб выбирает алгоритм и пару открытый, закрытый ключи— и посылает открытый ключ Алисе по открытому каналу.

  • Шифрование и передача сообщения.

Алиса шифрует информацию с использованием открытого ключа Боба .

И передает Бобу полученный шифротекст .

  • Расшифрование сообщения.

Боб, с помощью закрытого ключа , расшифровывает шифротекст .

Если необходимо наладить канал связи в обе стороны, то первые две операции необходимо проделать на обеих сторонах, таким образом, каждый будет знать свои закрытый, открытый ключи и открытый ключ собеседника. Закрытый ключ каждой стороны не передается по незащищенному каналу, тем самым оставаясь в секретности.

Литература

[Электронный ресурс]//URL: https://liarte.ru/referat/kodirovanie-i-shifrovanie-dannyih/

1. Симонович С.В. Информатика. Базовый курс. Дрофа 2000.

2. Савельев А. Я. Основы информатики: Учебник для вузов. Оникс 2001.

3. Баричев С. Введение в криптографию. Электронный сборник. Вече1998.

4. Э. Мэйволд. Безопасность сетей.— 2006.— 528с.

5. А. П. Алферов, А. Ю. Зубов, А. С. Кузьмин, А. В. Черемушкин. Основы Криптографии. — Гелиос АРВ, 2002.

6. http://shifrovanie.narod.ru/articles/5n96y3a.htm

7. web.ru/p11.htm