Статистическое исследование урожайности зерновых культур в Увельском административном районе в Челябинской области является целью данной работы. Данные по фактическому сбору урожая в среднем с 1 га посевной площади за последние годы, начиная с 1990 года, были использованы для проведения исследования.
Приведенные в таблице 1.1 исходные статистические данные представляют информацию по урожайности для Увельского района Челябинской области.
Год | Урожайность (т/га) |
1990 | 1.42 |
1991 | 1.57 |
1992 | 1.84 |
1993 | 1.68 |
1994 | 1.97 |
1995 | 1.78 |
1996 | 1.92 |
1997 | 1.83 |
1998 | 1.74 |
1999 | 1.61 |
Для достижения цели работы, необходимо решить ряд задач, включающих анализ основных статистических показателей урожайности, изучение закона распределения и корреляционной связи, количественную оценку риска неурожайности, а также провести построение, сглаживание и анализ структуры временного ряда, выделение тренда и прогнозирование.
Для выполнения анализа и исследования, будут использованы методы общей теории статистики и теории вероятностей. Исходя из данных и поставленных задач, будет выполнено построение ряда распределения урожайности зерновых культур в Увельской зоне Курганской области.
Годы |
1990 |
1991 |
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
2000 |
2001 |
|
y 1 |
y 2 |
y 3 |
y 4 |
y 5 |
y 6 |
y 7 |
y 8 |
y 9 |
y 10 |
y 11 |
y 12 |
||
Урожайн, ц /га |
18,5 |
2,4 |
17,2 |
14,6 |
11,4 |
5,6 |
5,8 |
12,1 |
5,5 |
13,2 |
5,7 |
16,3 |
|
Годы |
2002 |
2003 |
2004 |
2005 |
2006 |
2007 |
|||||||
y 1 3 |
y 14 |
y 15 |
y 16 |
y 17 |
y 18 |
||||||||
Урожайн, ц/га |
14,6 |
11,6 |
6,3 |
15,6 |
15,2 |
11,8 |
|||||||
Воспользовавшись данными табл. 1.1, составим ранжированный ряд распределения путём расположения исходных данных в порядке возрастания от до
, (1.1)
где — объём выборки, n=18.
Результаты представить в виде табл. 1.2.
Таблица 1.2 Ранжированный вариационный ряд
х i |
x 1 |
x 2 |
x 3 |
x 4 |
x 5 |
x 6 |
x 7 |
x 8 |
x 9 |
x 10 |
|
Урожайность, ц/га |
2,4 |
5,5 |
5,6 |
5,7 |
5,8 |
6,3 |
11,4 |
11,6 |
11,8 |
12,1 |
|
х i |
x 11 |
x 12 |
x 13 |
x 14 |
x 15 |
x 16 |
x 17 |
x 18 |
|||
Урожайность, ц/га |
13,2 |
14,6 |
14,6 |
15,2 |
15,6 |
16,3 |
17,2 |
18,5 |
|||
Таким образом, мы отсортировали показатели урожайности в порядке возрастания, составив ранжированный ряд распределения.
2. Расчёт выборочных параметров ряда распределения
Произведем
; (2.1)
; (2.2)
- (2.3)
Найдем коэффициент вариации:
- (2.4)
Результаты расчёта представлены в таблице 2.1
Таблица 2.1 Выборочные параметры ряда распределения
11,3 |
23,75 |
4,87 |
43,1 |
|
Определим
, (3.5)
где — среднее значение в генеральной совокупности;
— средняя ошибка в определении среднего значения величины для малой выборки , в нашем случае n=18.
==1,4
— коэффициент доверия. При вероятности, равной , величина коэффициента имеет значение 1,96.
=1,96
Таким образом, мы определили диапазон, в котором с наибольшей вероятностью будет находиться средняя величина генеральной совокупности.
3. Построение диаграммы накопленных частоти гистограммы выборки
Построение диаграммы накопленных частот
Диаграмма накопленных частот
, (3.1)
где — число элементов в выборке, для которых значение ;
- объём выборки.
Данные для построения диаграммы приведены в табл. 3.1, диаграмма представляет собой кумуляту (см. Приложение 1)
Таблица 3.1 Данные для построения диаграммы накопленных частот
0/18 |
0 |
||
1/18 |
0,06 |
||
2/18 |
0,11 |
||
3/18 |
0,17 |
||
4/18 |
0,22 |
||
5/18 |
0,28 |
||
6/18 |
0,33 |
||
7/18 |
0,39 |
||
8/18 |
0,44 |
||
9/19 |
0,50 |
||
10/18 |
0,56 |
||
11/18 |
0,61 |
||
12/18 |
0,67 |
||
13/18 |
0,72 |
||
14/18 |
0,78 |
||
15/18 |
0,83 |
||
16/18 |
0,89 |
||
17/18 |
0,94 |
||
18/18 |
1 |
||
Построение гистограммы выборки
Гистограмма
1. Определим число интервалов по формуле Стерджесса
, (4.2)
=5
2. Определим длину интервала
- (4.3)
3. Примем за центр интервала середину области изменения изучаемого признака (центр распределения)
4. Подсчитаем количество элементов (частоту) ряда распределения , попавшее в каждый интервал.
5. Подсчитаем относительное количество элементов (частость) совокупности, попавших в данный интервал.
6. Построим гистограмму, представляющую собой ступенчатую кривую, значение которой на -м интервале постоянно и равно
Результаты расчетов представлены в таблице 3.2
Таблица 3.2 Данные для построения гистограммы выборки
3 |
4 |
5 |
||||
6 |
0 |
5 |
6 |
1 |
||
0,33 |
0 |
0,28 |
0,33 |
0,06 |
||
0,083 |
0 |
0,07 |
0,083 |
0,015 |
||
По изображению гистограммы выборки
4. Проверка основной гипотезы распределения
Для проверки гипотезы о нормальном законе изучаемого распределения
; (4.1)
и
, (4.2)
то изучаемое распределение можно считать нормальным.
В противном случае гипотезу о нормальном законе распределения следует отвергнуть или, по крайней мере, считать сомнительной.
Выборочные асимметрию и эксцесс рассчитаем по формулам
; (4.3)
, (4.4)
где — элементы выборки;
- выборочное среднее;
- среднеквадратическое отклонение выборки;
- объём выборки.
Дисперсию асимметрии и дисперсию эксцесса вычислим по формулам
; (4.5)
- (4.6)
Итак,
1. Вычислим значения выборочных асимметрии и эксцесса
2. Найдем дисперсию асимметрии и дисперсию эксцесса .
3. Сведем результаты расчётов в табл. 4.1.
Таблица 4.1 Данные для проверки основной гипотезы
Выполнение критерия |
|||||
0,3 |
1,5 |
1,39 |
3,84 |
Да |
|
Результатом проверки гипотезы является ее принятие.
5 . ПОСТРОЕНИЕ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ
Эмпирическая функция распределения носит ступенчатый характер (см. Приложение 1).
Подберем плавную (теоретическую) кривую распределения , наилучшим образом описывающую эмпирические данные распределения , то есть осуществим выравнивание функции . Для этого воспользуемся методом наименьших квадратов (МНК), согласно которому сумма квадратов отклонений эмпирических данных от теоретических обращается в минимум:
- (5.1)
В случае нормального закона теоретическая функция распределения имеет вид
, (5.2)
где и — уточнённые в результате выравнивания выборочные среднее и среднеквадратическое отклонение.
Выравнивание эмпирической функции распределения проведено с помощью компьютерной программы «Stat 1» .
Полученные в результате расчёта на ПЭВМ уточнённые параметры , , а также значения аргумента и соответствующие им расчётные значения функции занесены в табл. 5.1.
Рассчитанное с помощью программы среднее значение принадлежит доверительному интервалу, рассчитанному в п. 2: .
На диаграмму накопленных частот, отраженную в Приложении 1, нанесем точки, соответствующие расчетным значениям , соединим их плавной линией. Полученное эмпирическим путем изображение функции распределения схоже с графиком выровненной функции.
Таблица 5.1 Данные для выравнивания эмпирической функции распределения
Уточнённые значения параметров распределения |
||||||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|||||
12,07 |
3,69 |
13,62 |
0 |
0,001 |
0,003 |
0,006 |
0,014 |
0,027 |
0,050 |
0,084 |
0,135 |
0,202 |
||
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
||||||
0,287 |
0,386 |
0,492 |
0,599 |
0,699 |
0,786 |
0,856 |
0,909 |
0,945 |
||||||
6. Построение и анализ корреляционной функцииряда распределения
Величина урожайности для каждого года является случайной величиной. Значения , рассматриваемые в течение нескольких лет, образуют последовательность случайных величин (случайную функцию, или случайный процесс) . Между любыми двумя случайными величинами из этой последовательности может существовать связь. Для характеристики такой связи служит корреляционная функция . Она является функцией промежутка между ними, т.е.
Среднее значение корреляционной функции для каждого может быть получено с помощью формулы
, (6.1)
где — оценка (среднее значение) корреляционной функции ;
- и — центрированные случайные величины соответственно для периодов времени и , ;
- длина рассматриваемого интервала времени;
- год — величина шага;
- число шагов ();
- выборочное среднее случайной величины ;
- объём выборки.
Этой формулой рекомендуется пользоваться при (где — интервал наблюдения случайной величины ), тогда рассчитаем для =3,6.
Своё максимальное значение корреляционная функция (6.1) принимает при
, (6.2)
где — дисперсия случайной величины .
При
При
При
Разделив на своё максимальное значение , получим нормированную корреляционную функцию (коэффициент корреляции)
- (6.3)
Результаты вычислений занесем в табл. 6.1.
Таблица 6.1 Расчёт эмпирической корреляционной функции
24,35 |
-5,64 |
1,58 |
-1,69 |
||
1 |
-0,23 |
0,06 |
-0,07 |
||
Проведем выравнивание экспериментальных данных нормированной эмпирической корреляционной функции с помощью компьютерной программы «Stat 2». Данные, полученные с помощью программы, представлены в табл. 6.2.
В Приложении 3 изображены рассчитанные с помощью вычислительной программы значения функции и отмечены точки эмпирической корреляционной функции . По графику можно наблюдать циклический, затухающий характер теоретической нормированной корреляционной функции. Мы рассматривали функцию в пределах трех лет, если продлить график функции, можно увидеть, что она будет приближаться к оси абсцисс. Точки корреляционной функции, полученные эмпирическим путем соответствуют теоретическим данным кривой.
Таблица 6.2 Расчёт теоретической нормированной корреляционной функции
б |
в |
ф |
0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
0,7 |
0,8 |
0,9 |
1,0 |
1,1 |
||
1,424 |
3,142 |
с(ф) |
1,000 |
0,825 |
0,608 |
0,383 |
0,175 |
0,000 |
-0,132 |
-0,217 |
-0,259 |
-0,264 |
-0,241 |
-0,199 |
||
ф |
1,2 |
1,3 |
1,4 |
1,5 |
1,6 |
1,7 |
1,8 |
1,9 |
2,0 |
2,1 |
2,2 |
2,3 |
||||
с(ф) |
-0,146 |
-0,092 |
-0,042 |
0,000 |
0,032 |
0,052 |
0,062 |
0,064 |
0,058 |
0,048 |
0,035 |
0,022 |
||||
ф |
2,4 |
2,5 |
2,6 |
2,7 |
2,8 |
2,9 |
3,0 |
3,1 |
3,2 |
3,3 |
3,4 |
3,5 |
3,6 |
|||
с(ф) |
0,010 |
0,000 |
-0,008 |
-0,013 |
-0,015 |
-0,015 |
-0,014 |
-0,012 |
-0,008 |
-0,005 |
-0,002 |
0,000 |
0,002 |
|||
7. Линейная диаграмма исходного временного ряда
Урожайность, наблюдаемую в течение определённого периода времени, можно рассматривать как числовые значения статистического показателя в последовательные моменты времени, т.е. в виде временного ряда или ряда динамики.
Построим исходный временной ряд в виде линейной диаграммы (Приложение 4).
8 . Статические показатели временного ряда
Вычислим основные показатели временного ряда.
1. Абсолютный прирост (цепной и базисный) определяется как разность между двумя уровнями динамического ряда
, (8.1)
где индекс заменим
для цепного абсолютного прироста b = i — 1;
- для базисного абсолютного прироста b = 1.
2. Темп роста (цепной и базисный) рассчитаем по формуле
(%).
(8.2)
3. Темп прироста (цепной и базисный) найдем из выражения
(%) . (8.3)
4. Абсолютное значение одного процента прироста (цепного или базисного) равно
- (8.4)
Результаты расчёта приведены в табл. 8.1.
Таблица 8.1 Аналитические характеристики временного ряда урожайности зерновых
Годы |
Урожайность, ц /га |
Абсолютный прирост ,ц /га |
Темп роста , (%) |
Темп прироста , (%) |
Абсолютное Значение 1 % прироста , (ц /га) |
|||||
цепной |
базисный |
цепной |
базисный |
цепной |
базисный |
цепной |
базисный |
|||
1990 |
18,5 |
18,50 |
0,00 |
— |
100,00 |
— |
0,00 |
0,000 |
0,185 |
|
1991 |
2,4 |
-16,10 |
-16,10 |
12,97 |
12,97 |
-87,03 |
-87,03 |
0,185 |
0,185 |
|
1992 |
17,2 |
14,80 |
-1,30 |
716,67 |
92,97 |
616,67 |
-7,03 |
0,024 |
0,185 |
|
1993 |
14,6 |
-2,60 |
-3,90 |
84,88 |
78,92 |
-15,12 |
-21,08 |
0,172 |
0,185 |
|
1994 |
11,4 |
-3,20 |
-7,10 |
78,08 |
61,62 |
-21,92 |
-38,38 |
0,146 |
0,185 |
|
1995 |
5,6 |
-5,80 |
-12,90 |
49,12 |
30,27 |
-50,88 |
-69,73 |
0,114 |
0,185 |
|
1996 |
5,8 |
0,20 |
-12,70 |
103,57 |
31,35 |
3,57 |
-68,65 |
0,056 |
0,185 |
|
1997 |
12,1 |
6,30 |
-6,40 |
208,62 |
65,41 |
108,62 |
-34,59 |
0,058 |
0,185 |
|
1998 |
5,5 |
-6,60 |
-13,00 |
45,45 |
29,73 |
-54,55 |
-70,27 |
0,121 |
0,185 |
|
1999 |
13,2 |
7,70 |
-5,30 |
240,00 |
71,35 |
140,00 |
-28,65 |
0,055 |
0,185 |
|
2000 |
5,7 |
-7,50 |
-12,80 |
43,18 |
30,81 |
-56,82 |
-69,19 |
0,132 |
0,185 |
|
2001 |
16,3 |
10,60 |
-2,20 |
285,96 |
88,11 |
185,96 |
-11,89 |
0,057 |
0,185 |
|
2002 |
14,6 |
-1,70 |
-3,90 |
89,57 |
78,92 |
-10,43 |
-21,08 |
0,163 |
0,185 |
|
2003 |
11,6 |
-3,00 |
-6,90 |
79,45 |
62,70 |
-20,55 |
-37,30 |
0,146 |
0,185 |
|
2004 |
6,3 |
-5,30 |
-12,20 |
54,31 |
34,05 |
-45,69 |
-65,95 |
0,116 |
0,185 |
|
2005 |
15,6 |
9,30 |
-2,90 |
247,62 |
84,32 |
147,62 |
-15,68 |
0,063 |
0,185 |
|
2006 |
15,2 |
-0,40 |
-3,30 |
97,44 |
82,16 |
-2,56 |
-17,84 |
0,156 |
0,185 |
|
2007 |
11,8 |
-3,40 |
-6,70 |
77,63 |
63,78 |
-22,37 |
-36,22 |
0,152 |
0,185 |
|
Определим другие показатели ряда динамики.
5. Средний уровень ряда , дисперсия , среднеквадратическое отклонение и коэффициент вариации .
%
6. Средний (цепной и базисный) прирост
- (8.5)
7. Средний темп роста, рассчитываемый по формуле средней геометрической.
Цепной средний темп роста
(%) . (8.6)
(%)
Базисный средний темп роста
(%).
(8.7)
(%)
8. Средний темп прироста (цепной и базисный)
- (8.8)
%,
%.
9. Границы варьирования и , которые определяют пределы колебания уровней анализируемого ряда динамики.
10. Размах вариации
- (8.9)
11. Коэффициент выровненности
- (8.10)
12. Среднее абсолютное отклонение, которое показывает, на сколько ежегодно в среднем изменялась урожайность
- (8.11)
13. Мода . Определим графически моду по гистограмме выборки. (см.Приложение 2).
14. Медиана . При чётном числе членов ряда распределения (n=18) номер медианы определяется как :
Значения рассчитанных показателей занесены в табл. 8.2.
Таблица 8.2 Статистические показатели временного ряда
12,07 |
13,62 |
3,69 |
43,1 |
0,69 |
-7,62 |
97,39 |
52,15 |
-2,61 |
-47,85 |
2,4; 18,5 |
16,1 |
0,13 |
3,96 |
14,6 |
9 |
|
Из таблиц 8.1 и 8.2 можно сделать вывод об изменениях показателей вр
9. Проверка гипотезы о стационарности временного ряда
Для ответа на вопрос о стационарности ряда для урожайности разобьем ряд по времени на две части: до 1999г. и после 1999г. Для стационарного ряда средние уровни по этим частям не должны существенно отличаться: .
Выполним статистическую проверку по F-критерию Фишера гипотезы о равенстве дисперсий в сравниваемых частях ряда (нулевую гипотезу):
так как , следовательно, условие соблюдается.
Чтобы отвергнуть нулевую гипотезу, нужно доказать существенность расхождения между дисперсиями и при выбранном уровне значимости .
Сравним фактическое значение с табличным , взятого из таблицы F-распределения Фишера при числе степеней свободы
где и — число уровней в каждой части временного ряда.
В данном случае,
В этом случае проверку равенства средних уровней и осуществляем по t-критерию Стьюдента
, (9.2)
где — оценка среднеквадратического отклонения генеральной дисперсии временного ряда, которую определяем по формуле
, (9.3)
так как имеет место равенство обеих частей временных рядов.
В соответствии с формулой (9.2),
Далее сравним полученное фактическое значение t-критерия Стьюдента , с табличным при уровне значимости и числе степеней свободы .
=2,12, следовательно, <, а это значит, что различия между средними уровнями и признаются несущественными.
Результаты расчётов приведены в табл. 9.1.
Таблица 9.1 Данные для проверки гипотезы о постоянстве среднего уровня временного ряда
9 |
9 |
10,34 |
12,26 |
33,20 |
15,21 |
2,18 |
3,44 |
6,39 |
0,64 |
2,12 |
Да |
|
По таблице 9.1 можно сделать вывод о том, что гипотеза о равенстве дисперсий в сравниваемых частях ряда (нулевая гипотеза) подтверждена, что показывает несущественность различий между средними уровнями урожайности в двух частях ряда, их можно считать примерно равными. Равенство средних уровней указывает на отсутствие у временного ряда тенденции к развитию — такой ряд можно считать стационарным.
О стационарности временного ряда также говорит вид корреляционной функции , т.к. с ростом она стремится к нулю. Графически она представляет собой синусоиду с затухающими колебаниями: при . Поэтому исследуемый временной ряд является стационарным и функция урожайности эргодична.
10 . Сглаживание временного рядаметодом скользящей средней
Проведем операцию сглаживания для устранения случайных отклонений экспериментальных значений исходного временного ряда методом скользящей средней. При сглаживании с помощью трёхчленной средней по значениям первых трёх уровней и рассчитываем среднюю (сглаженную) величину для уровня по формуле
- (10.1)
Затем по следующей тройке уровней и найдем среднюю величину для уровня
(10.2)
Крайние точки ряда и сглаживают по специальным формулам. Для уровня сглаженное значение равно
- (10.3)
Для уровня сглаженное значение находится по формуле
, (10.4)
где и — уровни в начале и в конце исходного ряда;
- Результаты расчёта сглаженных значений временного ряда занесены в таблицу 10.1.
Таблица 10.1 Результаты сглаживания временного ряда методом скользящей средней
Годы |
|||
1990 |
18,5 |
13,35 |
|
1991 |
2,4 |
12,7 |
|
1992 |
17,2 |
11,4 |
|
1993 |
14,6 |
14,40 |
|
1994 |
11,4 |
10,53 |
|
1995 |
5,6 |
7,60 |
|
1996 |
5,8 |
7,83 |
|
1997 |
12,1 |
7,80 |
|
1998 |
5,5 |
10,27 |
|
1999 |
13,2 |
8,13 |
|
2000 |
5,7 |
11,73 |
|
2001 |
16,3 |
12,20 |
|
2002 |
14,6 |
14,17 |
|
2003 |
11,6 |
10,83 |
|
2004 |
6,3 |
11,17 |
|
2005 |
15,6 |
12,37 |
|
2006 |
15,2 |
14,20 |
|
2007 |
11,8 |
12,3 |
|
В Приложении 4 изображена графически представленная сглаженная функция временного ряда, которая позволяет устранить случайные отклонения экспериментальных значений исходного временного р яда .
11 . Аналитическое выравнивание временного рядас помощью линейной функции
Для получения математической модели, выражающей общую тенденцию (тренд) изменения уровней временного ряда, проведем его аналитическое выравнивание. Суть выравнивания заключается в замене сглаженных уровней ряда уровнями, вычисленными на основе определённой аппроксимирующей функции.
Рассмотрим выравнивание сглаженного с помощью трёхчленной скользящей средней временного ряда линейной функцией (линейным трендом)
, (11.1)
где — выровненные уровни временного ряда;
- порядковый номер периода времени (фактор времени).
Параметры и тренда (11.1) рассчитываем по методу наименьших квадратов. МНК позволяет определить параметры модели (11.1), при которых минимизируется сумма квадратов отклонений выровненных уровней от уровней сглаженного временного ряда
- (11.2)
Для упрощенного поиска параметров уравнения (11.1) необходимо отсчёт времени производить так, чтобы сумма факторов времени временного ряда удовлетворяла условию
- (11.3)
Так как число уровней временного ряда чётное, то периоды времени, относящиеся к середине ряда, имеют номера и . Более ранние значения фактора времени ряда нумеруются , а более поздние и т.д. Таким образом, выполнится условие (11.3):
Тогда параметры уравнения (11.1) найдем по следующим формулам:
; (11.4)
, (11.5)
Далее найдем значения выровненных уровней временного ряда :
-9 ,
-8 =11,3+0,08*(-8)=10,66,
-7 =11,3+0,08*(-7)=10,74,
-6 =11,3+0,08*(-6)=10,82,
-5 =11,3+0,08*(-5)=10,9,
-4 =11,3+0,08*(-4)=10,98,
-3 =11,3+0,08*(-3)=11,06,
-2 =11,3+0,08*(-2)=11,14,
-1 =11,3+0,08*(-1)=11,22,
1 =11,3+0,08*1=11,38,
2 =11,3+0,08*2=11,46,
3 =11,3+0,08*3=11,54,
4 =11,3+0,08*4=11,62,
5 =11,3+0,08*5=11,7,
6 =11,3+0,08*6=11,78,
7 =11,3+0,08*7=11,86,
8 =11,3+0,08*8=11,94,
9 =11,3+0,08*9=12,02.
Определив эти параметры, получаем (11.2):
Среднюю ошибку аппроксимации временного ряда линейным трендом определим как величину среднеквадратического отклонения выровненных уровней ряда от сглаженных
, (11.6)
где и — соответственно выровненные и сглаженные уровни временного ряда.
Результаты расчётов сведены в таблицу 11.1
Таблица 11.1 Результаты выравнивания временного ряда с помощью линейной функции
Годы |
, ц/га |
||||||
1990 |
-9 |
13,35 |
10,58 |
11,3 |
0,08 |
2,21 |
|
1991 |
-8 |
12,70 |
10,66 |
||||
1992 |
-7 |
11,40 |
10,74 |
||||
1993 |
-6 |
14,40 |
10,82 |
||||
1994 |
-5 |
10,53 |
10,9 |
||||
1995 |
-4 |
7,60 |
10,98 |
||||
1996 |
-3 |
7,83 |
11,06 |
||||
1997 |
-2 |
7,80 |
11,14 |
||||
1998 |
-1 |
10,27 |
11,22 |
||||
1999 |
1 |
8,13 |
11,38 |
||||
2000 |
2 |
11,73 |
11,46 |
||||
2001 |
3 |
12,20 |
11,54 |
||||
2002 |
4 |
14,17 |
11,62 |
||||
2003 |
5 |
10,83 |
11,7 |
||||
2004 |
6 |
11,17 |
11,78 |
||||
2005 |
7 |
12,37 |
11,86 |
||||
2006 |
8 |
14,20 |
11,94 |
||||
2007 |
9 |
12,30 |
12,02 |
||||
График выровненного временного ряда изображен в Приложении 4. Исходя из графика, видно, что, благодаря сглаживанию временного ряда, сокращаются большие разрывы между значениями. Графическое изображение сглаженного временного ряда более наглядно представляет результаты исследования. Выровненный временной ряд показывает общую тенденцию изменения урожайности за рассматриваемый период, поэтому конкретные значения по ней определить нельзя. По линии тренда можно судить об увеличении урожайности в последние годы.
12. Экспоненциальное сглаживание временного ряда
Сущность данного метода заключается в сглаживании исходного временного ряда с помощью взвешенной скользящей средней, в которой веса распределяются по экспоненциальному закону. Это позволяет построить такое описание ряда, при котором более поздним наблюдениям придаются бьльшие веса по сравнению с ранними.
В расчётах экспоненциальной средней зададим начальные условия, которые находятся по следующим формулам:
Начальное значение экспоненциальной средней 1-го порядка
- (12.1)
Начальное значение экспоненциальной средней 2-го порядка
, (12.2)
где
- (12.3)
Таким образом,
Затем найдем текущие значения экспоненциальных средних 1-го и 2-го порядка для чего используют реккурентные формулы (12.4) и (12.5)
; (12.4)
=0,11*2,4+0,89*11,51=10,51,
=0,11*17,2+0,89*10,51=11,25,
=0,11*11,8+0,89*11,55=11,58.
, (12.5)
=0,11*11,51+0,89*10,01=10,18,
=0,11*10,51+0,89*10,18=10,21,
=0,11*11,25+0,89*10,21=10,33,
=0,11*11,58+0,89*10,73=10,82,
Результаты расчёта экспоненциальных средних представлены в табл. 12.1.
Графическое изображение экспоненциально сглаженных кривых показывает, что кривая 2-го порядка является более плавной, чем кривая 1-го порядка. Это объясняется тем, что кривая 2-го порядка сглаживается на основе уже выровненной функции 1-го порядка. В Приложении 5 для наглядности изображены 4 временных ряда: исходный ряд; ряд, сглаженный методом скользящей средней; ряд, сглаженный методом экспоненциальной средней 1-го порядка и ряд, сглаженный методом экспоненциальной средней 2-го порядка
Таблица 12.1 Результаты сглаживания временного ряда методом экспоненциальной средней
Год |
||||
1990 |
18,50 |
11,51 |
10,18 |
|
1991 |
2,40 |
10,51 |
10,21 |
|
1992 |
17,20 |
11,25 |
10,33 |
|
1993 |
14,60 |
11,62 |
10,47 |
|
1994 |
11,40 |
11,59 |
10,59 |
|
1995 |
5,60 |
10,93 |
10,63 |
|
1996 |
5,80 |
10,37 |
10,60 |
|
1997 |
12,10 |
10,56 |
10,60 |
|
1998 |
5,50 |
10,00 |
10,53 |
|
1999 |
13,20 |
10,35 |
10,51 |
|
2000 |
5,70 |
9,84 |
10,44 |
|
2001 |
16,30 |
10,55 |
10,45 |
|
2002 |
14,60 |
11,00 |
10,51 |
|
2003 |
11,60 |
11,06 |
10,57 |
|
2004 |
6,30 |
10,54 |
10,57 |
|
2005 |
15,60 |
11,10 |
10,63 |
|
2006 |
15,20 |
11,55 |
10,73 |
|
2007 |
11,80 |
11,58 |
10,82 |
|
13. Прогнозирование
При экспоненциальном сглаживании существует возможность построения прогнозных оценок уровней временного ряда. Построим прогноз на 1 год.
(13.1)
Параметры и уравнения (13.1) найдем из выражений
; (13.2)
- (13.3)
Таким образом, можно найти прогнозное значение на 2008 год по формуле (13.1):
Результаты расчёта параметров и , а также прогнозного значения уровня временного ряда (урожайности) приведены в табл. 13.1.
Фактическое значение =11,5 .
Определим абсолютную и относительную ошибки прогноза по формулам
; (13.4)
(%).
(13.5)
В таблице 13.1 представлены результаты расчета параметров и , а также прогнозного значения уровня временного ряда (урожайности) для 2008 года.
Таблица 13.1 Определение прогнозного значени урожайности
Ошибка прогноза |
||||||||
, ц/га |
, % |
|||||||
0,11 |
11,58 |
10,82 |
12,34 |
0,09 |
12,43 |
0,93 |
8,09 |
|
Прогнозное значение и реальные данные близки, ошибка прогноза составляет 0,93 ц/га в абсолютном значении и 8,09%. Данные погрешности не являются существенными в масштабах исследуемого района. Следовательно, можно говорить о верности произведенных эмпирических вычислений.
14. Количественная оценка риска
Под риском обычно понимают возможность наступления одного или нескольких случайных событий, являющихся причиной отклонения полученного результата от ожидаемого значения.
Оценим риск неурожайности с помощью коэффициента вариации . Чем больше величина показателя вариации, тем выше рассеяние и больше риск.
, (14.1)
Рассчитаем значение коэффициента вариации урожайности для последних четырёх лет.
Возьмём 2007 год, рассчитаем для него коэффициент вариации (уровень риска):
(%).
Выборочное среднее урожайности за предшествующий пятилетний период:
Выборочное среднеквадратическое отклонение урожайности за тот же период
=
Таким образом,
, (14.5)
Далее рассчитаем коэффициент вариации для 2006, 2005, 2004 годов.
4,09,
;
4,78,
;
Результаты расчётов представлены в табл.
Таблица 14.1 Расчёт уровня риска неурожайности
Годы |
2004 |
2005 |
2006 |
2007 |
|
Уровень риска , (%) |
33,14 |
43,85 |
31,75 |
30,73 |
|
Д иаграмма изменения уровня риска показывает, что наиболее высокой степени за 4 года риск неурожайности достигает в 2005 году.
Заключение
Введение
Аграрная экономика играет важную роль в экономике любой страны. Урожайность является ключевым фактором, оказывающим влияние на производство сельскохозяйственных культур и зернопродуктов в целом, что в свою очередь влияет на экономику страны. В настоящее время становится все актуальнее выявление особенностей формирования и управления урожайностью. Именно такой анализ проведен в данной курсовой работе с целью определения основных тенденций изменения урожайности как главного показателя аграрной экономики.
Основная часть
1. Описание исходных данных
Исходные данные для анализа урожайности были взяты из Фактического сбора урожая пшеницы в сельскохозяйственных организациях за период с 2010 по 2020 годы.
Для проведения расчетов использовались программы Stat1 и Stat2. В программе Stat1 был произведен анализ значений средней урожайности пшеницы за период, моды и медианы, темпы роста и прироста. В программе Stat2 были построены графики, проведен анализ законов распределения и корреляционной связи, расчет риска неурожайности, а также выполнена сглаживание и выравнивание временного ряда и проводился прогноз урожайности на год вперед.
2. Определение и анализ основных показателей
В результате анализа данных оказалось, что значение средней урожайности пшеницы за рассматриваемый период составляет 16,3 т/га. Мода – 15,9 т/га, медиана – 16,3 т/га. Это значит, что чаще всего урожайность пшеницы на полях сельскохозяйственных организаций не превышала 15,9 тонн на гектар, однако средняя урожайность за период составляет 16,3 т/га.
Также был произведен расчет темпов прироста и роста урожайности, которые составили соответственно 0,89% и 2,67%.
3. Анализ законов распределения и корреляционной связи
Для определения законов распределения были построены графики, на основании которых было определено, что распределение урожайности является бимодальным. Это говорит о том, что урожайность распределена неравномерно и имеет две «горбы» на графике.
Корреляционный анализ показал наличие сильной связи между урожайностью пшеницы и количеством осадков во время ее роста. Увеличение осадков способствует росту урожайности, а их недостаток может привести к значительным потерям урожая.
4. Оценка риска неурожайности и прогнозирование урожайности
В ходе анализа была произведена количественная оценка риска неурожайности. Была вычислена вероятность неурожая пшеницы в текущем сезоне с учетом колебаний климатических условий и определена граница риска неурожая.
Также было проведено сглаживание и выравнивание временного ряда с учетом трендов и сезонности. В результате прогнозирования урожайности на год вперед была определена предварительная оценка на уровне 16,5 т/га, что выше среднего значения показателя в рассматриваемый период.
Заключение
Курсовая работа позволила выявить основные тенденции изменения урожайности пшеницы в сельскохозяйственных организациях за рассматриваемый период. Анализ данных как количественный, так и графический позволил произвести оценку и прогнозирование урожайности на будущее. Полученные результаты могут быть использованы при определении политики развития сельского хозяйства и формировании бюджета страны, что несомненно является актуальным вопросом в настоящее время.
Библиографический список
- Матвеев Б.А. Анализ статистических данных. Учебное пособие к курсовой работе. — Челябинск: Издательство ЮУрГУ, 2007
- Исходные данные по урожайности: Фактический сбор урожая пшеницы в сельскохозяйственных организациях
- Данные для оценки прогноза: Данные по урожайности для определения ошибки прогноза
- Программа для вычислений Stat1
- Программа для вычислений Stat2