Грин Б. Элегантная Вселенная

Дипломная работа

Грин Б. Элегантная Вселенная — раздел Литература, Библиография = Грин Б. Элегантная Вселенная. Суперструны, Скрыт…

БИБЛИОГРАФИЯ = Грин Б. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. — М.: Едиториал УРСС, 2004. — 288 с.

Грин Б. Элегантная Вселенная 1

Грин Б. Элегантная Вселенная. — М.: Едиториал УРСС, 2004. — 288 с.

Выдержки из рецензий на книгу Брайана Грина «Элегантная Вселенная» Грин затрагивает потрясающее количество тем, излагая их простым и ясным языком без математических выкладок и…

Brian Greene

THE ELEGANT UNIVERSE

Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

Vintage Books

A Division of Random House, Inc.

New York

ЭЛЕГАНТНАЯ ВСЕЛЕННАЯ Суперструны, скрытые размерности и поиски окончательной теории

Таблица 1.2

должна быть равна нулю) Взаимодействие Частица, переносящая взаимодействие Масса Сильное Глюон … же как для гравитационного взаимодействия степень влияния на тело определяется… Несмотря на наличие общих свойств, исследование фундаментальных взаимодействий привело только к появлению новых…

Влияние на время. Часть I

Вдохновленный успехом, Генеральный секретарь использует тот же самый подход к двум другим воющим нациям, которые также достигли мирного соглашения.… Как раз в этот момент приходит известие, что между представителями обеих… Давайте рассмотрим более подробно, как все это выглядело с точки зрения наблюдателя, расположенного на платформе.…

Влияние на время. Часть II

Конечно, выражение «идеально регулярные циклы движения» неявно использует понятие времени, поскольку слово «равномерные» означает одинаковую… Наша цель состоит в том, чтобы понять, как движение влияет на ход времени.… Глава 2. Пространство, время и взгляд наблюдателя 33 Рис. 2.1.…

И все же: кто движется?

Рассматривая подписание договора с помощью сигнальной лампы, мы уже сталкивались с ситуацией, в которой различные точки зрения ведут к выводам,… Как и со всеми кажущимися парадоксами, вытекающими из специальной теории… Это кажется парадоксальным, однако давайте попробуем поставить точный эксперимент, который разрешит логическое…

Как насчет Е = mс2?

Хотя Эйнштейн не был сторонником того, чтобы его теория называлась «теорией относительности» (предлагая вместо этого термин «теория инвариантности», которое, помимо всего прочего, отражает неизменность скорости света), теперь нам понятен смысл этого термина. Работа Эйнштейна показала, что понятия пространства и времени, которые раньше казались независимыми и абсолютными, на самом деле тесно взаимосвязаны и являются относительными. Эйнштейн пошел дальше и выяснил, что и другие физические характеристики мироздания неожиданно тесно связаны между собой. Его самое знаменитое уравнение дает один из наиболее важных примеров такой связи. В этом уравнении Эйнштейн утверждает, что энергия объекта (Е) и его масса (т) не являются независимыми величинами; зная массу, мы можем определить энергию (умножив массу на квадрат скорости света, с2 ), а зная энергию, мы можем рассчитать массу (разделив энергию на квадрат скорости света).

Иными словами, энергия и масса, подобно долларам и евро, являются конвертируемыми валютами. Однако в отличие от денег, обменный курс, равный квадрату скорости света, зафиксирован раз и навсегда. Поскольку этот обменный курс столь велик (с2 — очень большое число), то энергии, сосредоточенной в небольшой массе, может хватить надолго. Мир уже столкнулся с огромной разрушительной мощью, возникшей при превращении менее одного процента от 900 граммов урана в энергию в Хиросиме. Наступит день,

Дилемма пространства, времени и квантов

по-настоящему»,

Как мы увидим в следующей главе, этот вывод посеял семена второго крупного противоречия, с которым столкнулись физики в течение прошлого столетия, и которое, в конечном счете, обрекло на гибель еще одну почтенную и уважаемую теорию — ньютоновскую универсальную теорию тяготения.

Глава 3. 0б искривлениях и волнистой ряби

В специальной теории относительности Эйнштейн разрешил конфликт между накопленными за века интуитивными представлениями о движении и постоянством скорости света. Вкратце его выводы состояли в том, что наша интуиция имеет изъяны — она срабатывает при скоростях, которые обычно чрезвычайно малы по сравнению со скоростью света и поэтому скрывают истинную суть пространства и времени. Специальная теория относительности раскрыла их природу и показала, что она радикально отличается от существовавших ранее представлений. Однако переосмысление понятий пространства и времени оказалось нелегким делом. Эйнштейн вскоре осознал, что одно из многочисленных следствий специальной теории относительности является особенно глубоким: утверждение, что ничто не может превысить скорость света, оказалось несовместимым со всеми уважаемой ньютоновской теорией всемирного тяготения, сформулированной во второй половине XVII в. Таким образом, разрешив одно противоречие, специальная теория относительности породила другое. После десятилетия интенсивных, иногда мучительных исследований, Эйнштейн разрешил эту дилемму в общей теории относительности. В этой теории он еще раз совершил революцию в понимании свойств пространства и времени, показав, что они искривляются и деформируются, передавая действие силы тяжести.

Ньютоновский взгляд на гравитацию

В 1642 г. в Линкольншире в Англии родился Исаак Ньютон, который изменил лицо науки, поставив всю мощь математики на службу физическим исследованиям. Интеллект Ньютона был столь всеобъемлющ, что, например, когда он однажды обнаружил, что не существует математического аппарата, требуемого для проводимых им исследований, он создал его. Прошло почти три столетия, прежде чем наш мир снова посетил гений сопоставимого масштаба. Ньютону мы обязаны многими глубокими проникновениями в сущность мироздания. Для нас первостепенное значение будет иметь его теория всемирного тяготения.

Сила тяжести везде вокруг нас в повседневной жизни. Она удерживает нас и все окружающие тела на поверхности Земли, не позволяет воздуху, которым мы дышим, ускользнуть в космическое пространство, удерживает Луну на орбите вокруг Земли, а Землю — на орбите вокруг Солнца. Сила тяжести диктует ритм космического танца, который неустанно и педантично исполняется миллиардами миллиардов обитателей Вселенной, от астероидов до планет, от звезд до галактик. Более трех столетий авторитет Ньютона заставлял нас принимать на веру, что одна только сила тяготения отвечает за все разнообразие земных и внеземных событий. Однако до Ньютона не было понимания того, что падение яблока с дерева есть проявление того же закона, который удерживает планеты на орбитах вокруг Солнца. Сделав отважный шаг в сторону гегемонии науки, Ньютон объединил физические принципы, управляющие Землей и небесами, и объявил силу тяжести невидимой рукой, действующей в обеих сферах.

Ньютоновскую концепцию тяготения можно было бы назвать великим уравнителем. Ньютон объявил, что абсолютно все

Дилемма пространства, времени и квантов

оказывает воздействие на абсолютно все во Вселенной. Это воздействие представляет собой силу тяжести, которая является силой притяжения. Независимо от физической структуры, все оказывает и все испытывает воздействие силы тяжести. Основываясь на тщательном анализе проведенного Иоганнесом Кеплером изучения движения планет, Ньютон пришел к выводу, что сила гравитационного притяжения между двумя телами зависит только от двух величин: от количества вещества в каждом теле и от расстояния между ними. Вещество означает материю, состоящую из протонов, нейтронов и электронов, которые, в свою очередь, определяют массу объекта. Ньютоновская теория всемирного тяготения утверждает, что сила притяжения между двумя телами будет больше для тел большей массы и меньше для тел меньшей массы; она также утверждает, что сила притяжения увеличивается при уменьшении расстояния между телами, и уменьшается при увеличении расстояния.

Ньютон не просто дал это качественное описание, он сделал больше, сформулировав уравнения, количественно описывающие силу тяжести, действующую между двумя телами. Конкретно, эти уравнения утверждают, что сила тяготения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Этот «закон тяготения» может быть использован для предсказания движения планет и комет вокруг Солнца, Луны вокруг Земли и ракет, отправляющихся для исследования планет, а также для решения более приземленных задач — расчета траектории полета мячика или прыгуна с трамплина, крутящего сальто над бассейном. Согласие между предсказаниями и результатами наблюдений за фактическим движением тел является поразительным. Этот успех обеспечивал теории Ньютона безоговорочную поддержку вплоть до первой половины XX в. Однако открытие Эйнштейном специальной теории относительности выдвинуло проблемы, ставшие непреодолимым препятствием для теории Ньютона.

Несовместимость ньютоновской теории тяготения и специальной теории относительности

Главной особенностью специальной теории относительности является существование абсолютного барьера для скорости, устанавливаемого скоростью света. Важно понимать, что этот предел относится не только к материальным телам, но также к сигналам и воздействиям любого рода. Не существует способа передать информацию или возмущение из одного места в другое со скоростью, превышающей скорость света. Конечно, в природе есть масса способов распространения возмущений со скоростью, меньшей скорости света. Например, наша речь и другие звуки передаются с помощью колебаний, распространяющихся в воздухе со скоростью около 330 м/с, что ничтожно мало по сравнению со скоростью света, равной 300 000 км/с. Эта разница скоростей становится очевидной, если наблюдать за бейсбольным матчем с мест, расположенных далеко от поля. Когда подающий бьет по мячу, звук достигает вас спустя несколько мгновений после того, как вы увидели удар. Похожие вещи происходят во время грозы. Хотя вспышка молнии и удар грома происходят одновременно, мы видим молнию раньше, чем слышим гром. Это снова является отражением значительной разницы в скоростях света и звука. Успех специальной теории относительности говорит нам, что обратная ситуация, когда какой-нибудь сигнал достигнет нас раньше, чем свет, излученный одновременно с этим сигналом, попросту невозможна. Ничто в мире не может обогнать фотоны.

немедленно

06 искривлениях и волнистой ряби

тения утверждает, что если Солнце внезапно взорвется, то Земля, расположенная на расстоянии примерно 150 млн км от него, мгновенно сойдет со своей обычной эллиптической орбиты. Несмотря на то, что вспышка света от взрыва дойдет от Солнца до Земли только через восемь минут, в теории Ньютона сведения о том, что Солнце взорвалось, будут переданы на Землю мгновенно, посредством внезапного изменения силы тяготения, управляющей движением планеты.

Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип.

Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счете, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения.

Самая счастливая идея Эйнштейна

представляет собой

каким образом

Дилемма пространства, времени и квантов

осознал, что, несмотря на сотни лет экспериментального подтверждения ньютоновской теории, специальная теория относительности обнаружила едва уловимую внутреннюю «неисправность», а устранение этой неисправности потребует решить вопрос об истинном механизме тяготения.

В 1907 г., обдумывая эти вопросы за своим столом в патентном бюро швейцарского города Берна, Эйнштейн сумел нащупать центральную идею, которая, после ряда успехов и неудач, в конечном счете привела его к радикально обновленной теории тяготения. Предложенный Эйнштейном подход не просто восполнил пробелы в ньютоновской теории, но совершенно изменил наши представления о тяготении, и, что очень важно, оказался полностью совместимым со специальной теорией относительности.

ускоренного

«Самая счастливая идея» Эйнштейна объясняет, как сделать это. Чтобы понять ее, вообразим, что сейчас 2050 г. и вы являетесь главным экспертом ФБР по взрывчатым веществам. К вам обращаются с отчаянной мольбой срочно исследовать объект, который, по-видимому, является бомбой изощренной конструкции, заложенной в самом центре Вашингтона. Поспешив на место действия и осмотрев бомбу, вы видите, что сбылись ваши самые худшие предчувствия — бомба является атомной и имеет такую мощность, что даже если поместить ее глубоко под землю или на дно океана, последствия от взрыва будут опустошительными. После внимательного изучения детонирующего устройства вы видите, что обезвредить его невозможно и, более того, оно содержит защиту нового типа. Бомба смонтирована на весах. Как только показания весов изменятся более чем на 50 % от того значения, которое они показывают сейчас, бомба взорвется. Изучив часовой механизм, вы видите, что в вашем распоряжении осталась всего неделя. От ваших действий зависит судьба миллионов людей — что же делать?

Итак, смирившись с тем, что на земле и под землей нет безопасного места, где можно было бы взорвать бомбу, вы приходите к выводу, что остается только один выход: необходимо запустить ее в космос, где взрыв не причинит ущерба никому. Вы высказываете эту идею на совещании вашей команды в ФБР, и почти немедленно молодой сотрудник перечеркивает этот план. «В вашем предложении есть серьезный изъян, — говорит ваш ассистент Исаак. — Когда устройство будет удаляться от Земли, его вес начнет уменьшаться, поскольку гравитационное притяжение со стороны Земли будет ослабевать. Это означает, что показания весов внутри устройства уменьшатся, что приведет к детонации задолго до того, как бомба удалится на безопасное расстояние». Прежде чем вы успеваете полностью осмыслить это возражение, в разговор вмешивается другой молодой человек. «На самом деле здесь есть еще одна проблема, которую нам следует обсудить, — заявляет ваш другой ассистент Альберт. — Она столь же важна, как та, на которую указал Исаак, но является более тонкой, поэтому следите внимательно за моим объяснением». Желая взять минуту на размышление, чтобы обдумать возражение Исаака, вы пытаетесь отмахнуться от Альберта, но если уж он начал говорить, остановить его невозможно.

должна ускориться,

Об искривлениях и волнистой ряби

Основание бомбы, которое стоит на весах, будет давить на весы сильнее, чем когда оно находится в покое. Это похоже на то, как ваше тело прижимается к сиденью автомобиля при разгоне. Бомба „вдавится» в весы точно так же, как ваша спина в спинку сидения. Под давлением показания весов увеличиваются, и это приведет к взрыву, как только увеличение превысит 50 %».

будут уменьшаться.

Предложение Альберта начинает постепенно до вас доходить. «Иными словами — говорите вы, — ускорение может быть заменой тяготения. Мы можем имитировать действие силы тяжести правильно подобранным ускоренным движением».

«Совершенно верно», — подтверждает Альберт.

«Итак, — продолжаете вы, — мы можем запустить бомбу в космос и, соответствующим образом регулируя ускорение ракеты, гарантировать, что показания весов не изменятся и бомба не взорвется до тех пор, пока не удалится на безопасное расстояние от Земли». Таким образом, если вы заставите гравитацию и ускорение играть друг против друга, используя для этого возможности ракетной техники XXI в., то сможете избежать катастрофы.

почувствуете

Дилемма пространства, времени и квантов

сила тяготения;

— Описание, приведенное выше, показывает, что общая теория относительности завершает работу, начатую специальной теорией относительности. Используя принцип относительности, специальная теория относительности провозглашает равноправие точек зрения наблюдателей: законы физики проявляются одинаковым образом для всех наблюдателей, находящихся в состоянии равномерного движения. Но это равноправие на самом деле является ограниченным, поскольку из него исключается огромное число точек зрения других наблюдателей, находящихся в состоянии ускоренного движения. Прозрение, пришедшее к Эйнштейну в 1907 г., показывает, как охватить все точки зрения — и тех, кто движется с постоянной скоростью, и тех, кто ускоряется, — в рамках одной изящной концепции. Поскольку нет различия между ускоренным пунктом наблюдения в отсутствии гравитационного поля и неускоренным пунктом наблюдения в присутствии гравитационного поля, можно выбрать это последнее описание и провозгласить, что все наблюдатели, независимо от состояния движения, могут утверждать, что они неподвижны, а «остальная часть мира движется рядом с ними», если они подходящим образом введут гравитационное поле в описание своего окружения. В этом смысле, благодаря включению гравитации, общая теория относительности гарантирует нам, что все возможные точки зрения являются равноправными. (Как мы увидим ниже, это означает, что различия между наблюдателями в главе 2, которые были основаны на ускоренном движении — как в случае с Джорджем, устремившимся за Грейс, включив свой ранцевый двигатель, и постаревшим меньше, чем она — допускают эквивалентное описание без ускорения, но с гравитацией.)

Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космиса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счете, этот подход принес свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — кривизну пространства и времени, — к обсуждению которой мы сейчас перейдем.

Ускорение и искривление пространства и времени

Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду: «Сейчас я работаю исключительно над проблемой гравитации… одно могу сказать определенно — никогда в моей жизни

Об искривлениях и волнистой ряби

я не изнурял себя так, как сейчас… по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой» 3 ‘.

Верхом на торнадо.

Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2p (около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе?

длина уменьшается.

Дилемма пространства, времени и квантов

Дилемма пространства 1 Рис. 3.1. Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому ее длина не уменьшается
Дилемма пространства 2 Рис. 3.2. Окружность, нарисованная на поверхности сферы (б), имеет меньшую длину, чем окружность, нарисованная на плоском листе бумаги (о), а окружность, начерченная на седлообразной поверхности, будет иметь большую длину, несмотря на то, что все три имеют одинаковый радиус

обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить ее, совмещая начало с концом, большее число раз, чтобы обойти весь круг. Так как Слим продолжает считать, что длина рулетки составляет один метр (поскольку между ним и его рулеткой нет относительного перемещения, он думает, что она имеет свою обычную длину в один метр), он измерит большую длину окружности, чем мы. (Если это кажется парадоксальным, вам может помочь примечание 5.)

не сокращается

Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2p, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой—нибудь фигуры в форме окружности нарушалось установленное еще древними греками правило, согласно которому для любой окружности это отношение в точности равно 2p?

Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривленной или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, не будет равно 2p.

В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности (б), нарисованной на искривленной поверхности сферы, меньше длины окружности (а), нарисованной на плоской поверхности, несмотря на то, что они имеют одинаковый радиус. Искривленный характер поверхности сферы приводит к тому, что радиальные линии, проведенные из центра, слегка сходятся друг к другу, приводя к небольшому уменьшению длины окружности. Длина окружности (в ), нарисованной на седловидной искривленной поверхности, больше, чем длина окружности, изображенной на плоской поверхности. Свойства кривизны седловидной поверхности приводят

Об искривлениях и волнистой ряби

к тому, что радиальные линии слегка расходятся, вызывая небольшое увеличение длины окружности. Эти наблюдения показывают, что отношение длины окружности к радиусу для (б) будет меньше, чем 2p, а для (в) — больше, чем 2p. Но отклонения от значения 2p, особенно в сторону увеличения, как в примере (в), — это как раз то, что было обнаружено в случае вращающегося аттракциона. Подобные наблюдения привели Эйнштейна к идее, что нарушение «обычной», евклидовой геометрии объясняется кривизной пространства. Плоская геометрия древних греков, которой тысячи лет учат школьников, попросту не применима к объектам на вращающемся круге. Вместо этого здесь имеет место ее обобщение на случай искривленного пространства, схематически показанное на рис.3.2в 5) .

не выполняются

В действительности, ускоренное движение приводит не только к искривлению пространства, но и к аналогичному искривлению времени. (Исторически Эйнштейн сначала сосредоточил внимание на кривизне времени, и только потом осознал важность кривизны пространства 6 ‘.) То, что время также подвергается искривлению, неудивительно — в главе 2 мы уже видели, что специальная теория относительности провозглашает союз пространства и времени. Это слияние было подытожено поэтическими словами Минковского, который на лекции по специальной теории относительности в 1908 г. сказал: «Отныне пространство и время, рассматриваемые отдельно и независимо, обращаются в тени и только их соединение сохраняет самостоятельность»7) . Пользуясь более приземленным, но столь же вольным языком, можно сказать, что сплетая пространство и время в единую ткань пространства-времени, специальная теория относительности провозглашает: «То, что истинно для пространства, то истинно и для времени». Однако здесь возникает вопрос. Мы можем представить себе искривленное пространство, зная, как искривлена его форма, но что мы имеем в виду, говоря о кривизне времени?

Для того чтобы нащупать ответ, еще раз посадим Слима и Джима на аттракцион и попросим их провести следующий эксперимент. Слим будет стоять на краю радиального отрезка спиной к кругу, а Джим будет медленно ползти к нему вдоль этого радиуса от центра круга. Через каждые несколько метров Джим будет останавливаться, и они будут сравнивать показания своих часов. Что они увидят? Наблюдая со своей позиции с высоты птичьего полета, мы снова сможем предсказать ответ. Их часы будут расходиться в показаниях. Мы пришли к этому выводу потому, что увидели, что Слим и Джим движутся с разной скоростью — при движении на аттракционе чем дальше от центра вы находитесь, тем большее расстояние должны пройти для того, чтобы совершить один оборот и, следовательно, тем быстрее вы движетесь. Но, согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее идут ваши часы — из этого мы заключаем, что часы Слима будут идти медленнее, чем часы Джима. Далее, Слим и Джим обнаружат, что по мере того как Джим будет приближаться к Слиму, его часы будут идти все медленнее, и скорость их хода будет становиться такой же, как у часов Слима. Это отражает тот факт, что по мере приближения Джима к краю круга, его скорость приближается к скорости Слима.

Мы приходим к выводу, что для наблюдателей на вращающемся круге, таких как Слим и Джим, скорость течения времени зависит от их положения — в нашем случае от их расстояния до центра круга. Это является иллюстрацией того, что мы понимаем под кривизной времени. Время искривлено, если скорость его хода изменяется от одной точки к другой. Важно подчеркнуть, что Джим заметит кое-что еще, когда будет ползти вдоль радиуса. Он почувствует возрастаю-

Дилемма пространства, времени и квантов

щую силу, выталкивающую его с круга, поскольку не только скорость, но и ускорение увеличиваются по мере удаления от центра круга. Используя наш аттракцион, мы видим, что большее ускорение связано с более сильным замедлением хода часов, — т. е. большее ускорение приводит к более значительному искривлению времени.

представляет собой

Основы общей теории относительности

Чтобы почувствовать, в чем суть нового представления о гравитации, рассмотрим типичную ситуацию, в которой планета типа нашей Земли вращается вокруг звезды, похожей на наше Солнце. В ньютоновской теории гравитации Солнце удерживает Землю на некоей неопределяемой «привязи», которая каким-то образом мгновенно преодолевает огромные расстояния в пространстве и захватывает Землю (аналогичным образом и Земля захватывает Солнце).

Эйнштейн предложил новую концепцию того, что происходит. Нам будет удобнее обсуждать подход Эйнштейна, имея конкретную наглядную модель пространства-времени, которой было бы удобно манипулировать. Для этого сделаем два упрощения. Во-первых, на какое-то время забудем о времени и сконцентрируемся исключительно на наглядной модели пространства. Позже мы вновь включим время в наше обсуждение. Во-вторых, для того, чтобы иметь возможность рисовать модели и размешать рисунки на страницах этой книги, мы часто будем использовать двумерные аналоги трехмерного пространства. Большинство выводов, которые мы получим, работая с моделями более низких размерностей, непосредственно применимо к физической трехмерной среде, поэтому более простые модели представляют собой прекрасные средства для объяснения и обучения.

Используя эти упрощения, мы изобразили на рис. 3.3 двумерную модель области нашей Вселенной. Координатная сетка удобна для указания положения, точно так же, как сеть улиц позволяет описать местонахождение в городе. При задании адреса в городе, кроме положения на двумерной сетке улиц, указывается также положение по вертикали, например, указание этажа. Для облегчения визуального восприятия будем отбрасывать третье измерение в наших двумерных моделях.

будет плоским.

Основы общей теории относительности 1
Рис. 3.3. Схематическое представление плоского пространства

Об искривлениях и волнистой ряби

Об искривлениях и волнистой ряби 1 Об искривлениях и волнистой ряби 2
Рис. 3.4. Массивное тело, такое как Солнце, заставляет структуру пространства искривляться подобно тому, как деформируется резиновая пленка, если на нее положить шар для боулинга Рис. 3.5. Земля остается на орбите вокруг Солнца потому, что катится по ложбине в искривленной структуре пространства. Говоря более точно, она следует «линии наименьшего сопротивления» в деформированной окрестности Солнца

Эйнштейна, которую мы рассмотрели выше, приводит к другому выводу.

Верхом на торнадо

Согласно этой радикальной гипотезе, пространство не является просто пассивной ареной событий во Вселенной; форма пространства изменяется под влиянием присутствующих в нем тел.

Это искривление, в свою очередь, влияет на другие тела, движущиеся вблизи Солнца, которые теперь будут перемещаться по деформированному пространству. Используя аналогию с резиновой пленкой и шаром для боулинга, можно сказать, что если мы поместим на пленку шарик и придадим ему начальную скорость, его траектория будет зависеть от того, присутствует ли в центре пленки массивный шар для боулинга. Если шара для боулинга там нет, резиновая пленка будет плоской, и шарик будет двигаться по прямой. Если шар для боулинга присутствует, он будет искривлять пленку, и шарик будет двигаться по искривленной траектории. Если мы придадим шарику соответствующую скорость и направим его в соответствующем направлении, он будет совершать периодическое движение вокруг шара для боулинга (если игнорировать действие сил трения), т.е. фактически «выйдет на орбиту». Наш язык способствует применению этой аналогии к гравитации.

механизм,

Дилемма пространства, времени и квантов

мым Солнцем; на самом деле это кривизна структуры пространства, вызванная присутствием Солнца.

Такая картина позволяет по-новому взглянуть на две лажные особенности гравитации. Во-первых, чем массивнее будет шар для боулинга, тем сильнее он будет деформировать пленку. Так же и в эйнштейновской модели гравитации — чем массивнее объект, тем более сильно он искривляет окружающее пространство. Это означает, в точном соответствии с экспериментальными фактами, что чем массивнее объект, тем сильнее его гравитационное воздействие на другие тела. Во-вторых, так же как деформация резиновой пленки, вызванная шаром для боулинга, становится все меньше по мере удаления от шара, так и кривизна пространства, созданная присутствием массивного тела, уменьшается при увеличении расстояния от него. Это опять же согласуется с нашим пониманием гравитации, которая ослабевает при увеличении расстояния между объектами.

Здесь важно помнить, что шарик сам искривляет резиновую пленку, хотя и слабо. Земля, которая сама является массивным телом, тоже искривляет пространство, хотя и в гораздо меньшей степени, чем Солнце. Это объясняет с позиций общей теории относительности то, почему Земля удерживает на орбите Луну, а также не дает нам с вами улететь в космическое пространство. Когда парашютист совершает свой прыжок, он скользит вниз по впадине в пространстве, образовавшейся под действием массы Земли. Более того, каждый из нас, как и любое массивное тело, также искривляет пространство вблизи своего тела, хотя из-за относительной малости массы человеческого тела эти впадины очень малы.

В заключение заметим, что Эйнштейн был полностью согласен с утверждением Ньютона: «Гравитация должна передаваться каким-то посредником», и принял вызов Ньютона, который оставил определение этого посредника «на усмотрение моих читателей». Согласно Эйнштейну, посредником гравитации является структура пространства.

Некоторые замечания

Аналогия с резиновой пленкой и шаром для боулинга полезна, поскольку она дает наглядный образ, с помощью которого можно реально понять, что означает искривление пространственной структуры Вселенной. Физики часто используют эту и другие подобные ей аналогии для выработки интуитивных представлений о гравитации и кривизне . пространства. Однако, несмотря на полезность, аналогия с резиновой пленкой и шаром для боулинга несовершенна, и мы хотим для полной ясности привлечь внимание читателя к некоторым ее недостаткам.

кривизна пространства и есть тяготение.

Об искривлениях и волнистой ряби

Об искривлениях и волнистой ряби 1
Рис. 3.6. Пример искривленного трехмерного пространства, окружающего Солнце

недостаток этой аналогии связан с тем, что пленка является двумерной. На самом деле Солнце (как и все другие массивные тела) искривляют окружающее их трехмерное пространство, но это труднее наглядно представить. На рис. 3.6 сделана попытка изобразить это. Все пространство, окружающее Солнце, «снизу», «с боков» и «сверху» подвергается деформации, и на рис. 3.6 схематически показана часть такого искривленного пространства. Тело, подобное Земле, движется сквозь трехмерное пространство, искривленное в результате присутствия Солнца. При взгляде на рисунок у вас могут возникнуть вопросы, — например, почему Земля не ударяется о «вертикальную часть» показанного на нем искривленного пространства? Следует, однако, иметь в виду, что пространство, в отличие от резиновой пленки, не образует сплошного барьера. Криволинейная сетка, показанная на рисунке, представляет собой всего лишь набор сечений трехмерного искривленного пространства, в которое Земля, мы с вами и все остальное погружены, и в котором все это свободно движется. Возможно, вам покажется, что это еще более усложняет картину; у вас может возникнуть вопрос: почему мы не ощущаем пространства, если погружены в его структуру? Но мы ощущаем его. Мы ощущаем силу тяжести, а пространство представляет собой среду, которая передает гравитационное воздействие. Выдающийся физик Джон Уилер часто говорил, описывая гравитацию, что «масса управляет пространством, говоря ему, как искривляться, а пространство управляет массой, говоря ей, как двигаться»8 ‘.

Верхом на торнадо,

Если вы будете помнить об этих трех важных замечаниях, то использование наглядной модели, состоящей из резиновой пленки и шара для боулинга, в качестве интуитивного обобщения предложенного Эйнштейном нового взгляда на гравитацию, является вполне приемлемым.

Разрешение противоречия

не мгновенно.

Дилемма пространства, времени и квантов

мы бы увидели, что возмущение, вызванное появлением шара для боулинга, распространяется подобно волнам в пруду и, в конце концов, достигает места, в котором находится шарик. Спустя короткое время переходные колебания резиновой пленки затухнут, и она перейдет в стационарное искривленное состояние.

в точности равна скорости света.

Снова об искривлении времени, Верхом на торнадо

Для этого снова посетим Джорджа и Грейс, которые находятся уже не во мраке пустого космического пространства, а где—то на окраине Солнечной системы. Оба они все еще носят на своих скафандрах большие цифровые часы, которые мы когда-то синхронизировали. Для простоты не станем учитывать влияние планет и будем рассматривать только гравитационное поле Солнца. Далее, представим себе, что космический корабль, зависший около Джорджа и Грейс, размотал длинный трос, конец которого достигает окрестностей солнечной поверхности. С помощью этого троса Джордж медленно перебирается ближе к Солнцу. По пути он периодически останавливается, чтобы сравнить темп хода времени на его часах и на часах Грейс. Искривление времени, предсказываемое общей теорией относительности Эйнштейна, означает, что по мере того, как он будет испытывать все более сильное воздействие гравитационного поля, его часы будут все больше отставать от часов Грейс. Иными словами, чем ближе он будет к Солнцу, тем медленнее будут идти его часы. Именно в этом смысле гравитация деформирует не только пространство, но и время.

Вы должны были заметить, что в отличие от случая, рассмотренного в главе 2, когда Джордж и Грейс находились в пустом пространстве, перемещаясь относительно друг друга с постоянной скоростью, сейчас между

06 искривлениях и волнистой ряби

ними нет симметрии. Джордж, в отличие от Грейс, ощущает, что сила тяжести становится все сильнее — ему приходится держаться за трос все крепче, чтобы не дать Солнцу притянуть себя. Оба согласны с тем, что часы Джорджа идут медленнее. Их точки зрения уже не являются «одинаково равноправными», что позволяло им обмениваться ролями и менять выводы на противоположные. На самом деле, ситуация схожа с той, с которой мы столкнулись в главе 2, когда Джордж испытал ускорение, включив ранцевый двигатель для того, чтобы догнать Грейс. Тогда ускорение Джорджа привело к тому, что его часы определенно стали идти медленнее, чем часы Грейс. Поскольку теперь мы знаем, что ощущение ускоренного движения совпадает с ощущением воздействия гравитационной силы, в теперешнем положении Джорджа, перебирающегося по тросу, действует тот же самый принцип, и мы снова видим, что часы Джорджа и все события в его жизни замедляются по сравнению с ходом времени у Грейс.

В гравитационном поле, подобном тому, которое существует на поверхности рядовой звезды вроде нашего Солнца, замедление темпа хода часов будет небольшим. Если Грейс находится на расстоянии миллиарда километров от Солнца, то когда Джордж будет в нескольких километрах от поверхности нашего светила, темп хода его часов составит примерно 99,9998 % темпа хода часов Грейс. Такое замедление очень мало 9 ).

Однако если Джордж будет спускаться по тросу, который висит над поверхностью нейтронной звезды, масса которой примерно равна массе Солнца, а плотность вещества превышает солнечную примерно в миллион миллиардов раз, сильное гравитационное поле этой звезды замедлит темп хода его часов до 76 % темпа хода часов Грейс. Еще более сильные гравитационные поля, подобные тем, которые имеют место на внешней поверхности черных дыр (они обсуждаются ниже), могут замедлить ход времени еще сильнее. Более сильные гравитационные поля вызывают более сильное искривление времени.

Экспериментальное подтверждение общей теории относительности

Большинство из тех, кому приходится изучать общую теорию относительности, бывают очарованы ее эстетической привлекательностью. Путем замены холодного, механистического взгляда Ньютона на пространство, время и тяготение на динамическое и геометрическое описание, включающее искривленное пространство-время, Эйнштейн сумел «вплести» тяготение в фундаментальную структуру Вселенной. Перестав быть структурой, наложенной дополнительно, гравитация стала неотъемлемой частью Вселенной на ее наиболее фундаментальном уровне. Вдохнув жизнь в пространство и время, позволив им искривляться, деформироваться и покрываться рябью, мы получили то, что обычно называется тяготением.

Если оставить в стороне эстетическое совершенство, конечным подтверждением справедливости физической теории является ее способность объяснять и точно предсказывать физические явления. Теория гравитации Ньютона блестяще выдерживала это испытание с момента ее появления в конце XVII в. и до начала XX столетия. Применительно к подбрасываемым в воздух мячам, телам, падающим с наклонных башен, кометам, кружащимся вокруг Солнца, или планетам, вращающимся по своим орбитам, теория Ньютона всегда давала чрезвычайно точное объяснение всем наблюдениям и предсказаниям, которые бесчисленное количество раз проверялись в самых разных условиях. Как мы уже подчеркивали, причины появления сомнений в этой необычайно успешной с экспериментальной точки зрения теории состояли в том, что согласно ей гравитационное взаимодействие передается мгновенно, а это противоречит специальной теории относительности.

Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично,

Дилемма пространства, времени и квантов

расхождения между общей теорией относительности Эйнштейна — теорией гравитации, совместимой со специальной теорией относительности, — и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них 10) .

оказывает влияние на траекторию идущего от звезд света.

Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению видимого положения звезды. Это смещение может быть точно измерено путем сравнения видимого положения звезды по сравнению с ее истинным положением, известным по результатам ночных наблюдений звезды (в отсутствие отклоняющего влияния Солнца), полученным с интервалом примерно в полгода до или после затмения, когда Земля находится в соответствующем положении. В ноябре 1915 г. Эйнштейн, используя разработанную им новую теорию гравитации для расчета угла, на который должен отклониться луч света от звезды, прошедший рядом с поверхностью Солнца, получил значение 0,00049 градуса (1,75 угловых секунд, где одна угловая секунда равна 1/3 600 градуса).

Этот крошечный угол равен углу раствора диафрагмы, сфокусированной на двадцатипятицентовой монетке в трех километрах от нее. Однако измерение столь малого угла было уже под силу технике тех дней. По просьбе сэра Фрэнка Дайсона, директора Гринвичской обсерватории, сэр Артур Эддингтон, известный астроном и секретарь Королевского астрономического общества Англии, организовал экспедицию на остров Принсипе, расположенный у западного побережья Африки, для проверки предсказания Эйнштейна в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г.

6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе — революционном пересмотре ранее существовавших понятий пространства и времени — вышла

Об искривлениях и волнистой ряби

далеко за пределы научного сообшества, сделав Эйнштейна знаменитым во всем мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал: «Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!» 11 ).

Это было звездным часом Эйнштейна.

За годы, прошедшие со времени этого эксперимента, подтверждение общей теории относительности, сделанное Эддингтоном, неоднократно подвергалось критическому анализу. Многочисленные сложности и тонкости, связанные с измерениями, затрудняют их воспроизведение и ставят под вопрос достоверность первоначальных результатов. Однако за последние 40 лет были выполнены разнообразные эксперименты с использованием последних достижений современной техники. Эти эксперименты предназначались для проверки различных аспектов общей теории относительности. Все предсказания общей теории относительности получили подтверждение. Сегодня не существует сомнений, что модель гравитации, предложенная Эйнштейном, не только совместима со специальной теорией относительности, но и дает более точное совпадение с экспериментальными данными, чем теория Ньютона.

Черные дыры, Большой взрыв и расширение Вселенной

Если эффекты специальной теории относительности становятся наиболее очевидными при больших скоростях движения тел, то общая теория относительности выходит на сцену, когда тела имеют очень большую массу и вызывают сильное искривление пространства и времени. Рассмотрим два примера.

Первым из них является открытие, сделанное во время Первой мировой войны немецким астрономом Карлом Шварцшильдом, когда он, находясь в 1916 г. на русском фронте, в перерывах между расчетом траекторий артиллерийских снарядов знакомился с достижениями Эйнштейна в области гравитации. Удивительно, что спустя всего несколько месяцев после того, как Эйнштейн нанес завершающие мазки на полотно обшей теории относительности, Шварцшильд сумел, используя эту теорию, получить полную и точную картину того, как искривляются пространство и время в окрестности идеально сферической звезды. Шварцшильд послал полученные им результаты с русского фронта Эйнштейну, который по его поручению представил их Прусской академии.

никакой объект

горизонтом событий

Прим. ред.

Дилемма пространства, времени и квантов

Дилемма пространства 1
Рис. 3.7. Черная дыра искривляет структуру окружающего пространства-времени настолько сильно, что любой объект, пересекающий ее «горизонт событий» — обозначенный черной окружностью — не может ускользнуть из ее гравитационной ловушки. Никто не знает в точности, что происходит в глубинах черных дыр

щихся, в конце концов, разрушительными гравитационных деформаций. Если, например, вы подплываете к центру черной дыры ногами вперед, то при пересечении горизонта событий вы будете ощущать растущее чувство дискомфорта. Гравитационное притяжение черной дыры возрастет столь значительно, что оно будет притягивать ваши ноги гораздо сильнее, чем голову (ведь ноги будут несколько ближе к центру черной дыры, чем голова), настолько сильно, что сможет быстро разорвать ваше тело на куски.

очень сильно.

Чтобы почувствовать всю грандиозность масштабов этих явлений, отметим, что звезда массой, равной массе Солнца, станет черной дырой, если ее радиус будет составлять не наблюдаемое значение (около 700 000 км), а всего лишь около 3 км. Вообразите, что все наше Солнце сжалось до размеров Манхэттена. Чайная ложка вещества такого сжатого Солнца будет весить столько же, сколько гора Эверест. Чтобы сделать черной дырой нашу Землю, мы должны сжать ее в шарик радиусом менее сантиметра. В течение долгого времени физики скептически относились к возможности существования таких экстремальных состояний материи, многие из них считали, что черные дыры являются всего лишь издержками разгулявшегося воображения перетрудившихся теоретиков.

Однако в течение последнего десятилетия накопилось достаточно много наблюдательных данных, подтверждающих существование черных дыр. Конечно, поскольку они являются черными, их нельзя наблюдать непосредственно, исследуя небосвод с помощью телескопа. Вместо этого астрономы пытаются обнаружить черные дыры по аномальному поведению обычных излучающих свет звезд, расположенных поблизости от горизонтов событий черных дыр. Например, когда частицы пыли и газа из внешних слоев находящихся по соседству с черной дырой обычных звезд устремляются в направлении горизонта событий черной дыры, они разгоняются почти до световой скорости. При таких скоростях трение в газопылевом водовороте засасываемого вещества приводит к выделению огромного количества тепла, заставляющего газопылевую смесь светиться, излучая обычный видимый свет и рентгеновское излучение. Поскольку это излучение генерируется вне горизонта событий,

06 искривлениях и волнистой ряби

миллиарды

Шварцшильд умер всего через несколько месяцев после того, как нашел свое решение. Он умер от кожного заболевания, которым заразился на русском фронте. Ему было 42 года. Его трагически краткое знакомство с теорией гравитации Эйнштейна открыло одну из наиболее ярких и таинственных граней жизни Вселенной.

общий пространственный размер Вселенной должен изменяться с течением времени.

космологическая постоянная,

Дилемма пространства, времени и квантов

ние расширения Вселенной, Эйнштейн совершил один из величайших интеллектуальных подвигов всех времен.

Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками, можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать ее происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся все ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звезды разрушаются, и образуется раскаленная плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до еще меньшего размера. Материя, из которой состоит все: каждый автомобиль, каждое здание, каждая гора на Земле, сама Земля, Луна, Сатурн, Юпитер и все другие планеты, Солнце и все другие звезды Млечного пути, галактика Андромеда с ее 100 миллиардами звезд и все остальные 100 миллиардов галактик — все это сожмется в космических тисках до чудовищной плотности. А когда часы покажут еще более раннее время, весь космос сожмется до размеров апельсина, лимона, горошины, песчинки и даже до еще более крошечного размера. Если экстраполировать весь этот путь назад, к «началу всех начал», можно прийти к выводу, что Вселенная должна была возникнуть как точка (образ, который мы подвергнем критическому анализу в последующих главах), в которой все вещество и вся энергия были спрессованы до невообразимых плотности и температуры. Считается, что огненный шар, вырвавшийся из этой гремучей смеси в результате Большого взрыва, исторг семена, из которых в дальнейшем развилась известная нам Вселенная.

в пространстве

Верна ли общая теория относительности?

Глава 3. Об искривлениях и волнистой ряби 63 быть такой же движущей силой прогресса, как и экспериментальные данные. За последние полвека физики столкнулись с другим теоретическим противоречием, не уступающим противоречию между…

Что представляют собой порции?

Эйнштейн пришел к своему объяснению, пытаясь решить проблему, известную под названием фотоэлектронной эмиссии (фотоэффекта).

В 1887 г. немецкий… 70 Часть II. Дилемма пространства, времени и… столь хорошими проводниками электричества).

Когда свет сталкивается с поверхностью металла, он отдает энергию: при…

Волна или частица?

Вариант установки в эксперименте Юнга, известном под названием опыта с двумя щелями, схематически показан на рис. 4.3. Фейнман любил говорить, что… Если левая щель закрыта, а правая открыта, фотография будет выглядеть, как… Представим, что вместо световых волн мы рассматриваем волны на поверхности воды. Это не повлияет на результат, но…

Волны чего?

Глава 4. Микроскопические странности 77 Рис. 4.9. Волна, ассоциированная с … и сегодня. Утверждение Борна касается одного из самых странных свойств… Это действительно необычная идея. Какое отношение имеет вероятность к формулировке фундаментальных законов физики? Мы…

Соотношение неопределенностей является сердцевиной квантовой механики.

Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика За последнее столетие наше понимание физического мира чрезвычайно углубилось.… Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого…

Снова атомы в духе древних греков?

По причинам, которые станут ясны в дальнейшем, длина типичной петли, образованной струной, близка к планковской длине, которая примерно в сто… Вскоре мы опишем ошеломляющие выводы, следующие из замены точечных частиц… Есть два возможных ответа на этот вопрос. Во-первых, струны действительно являются фундаментальными объектами — они…

Ловкость рук?

Прежде всего вывод, который можно сделать из предыдущего обсуждения, состоит в том, что предполагаемые флуктуации структуры пространства в масштабе… 110 Часть III. Космическая… проблемой только потому, что не поняли истинных правил игры: новые правила гласят, что существует предел тому,…

Не только струны?

Однако в середине 1990-х гг. специалисты по теории струн, используя косвенные и довольно сложные рассуждения, несколько неожиданно установили, что… Глава 7. «Супер» в суперструнах Когда в ходе экспедиции Эддингтона 1919 г., организованной для проверки предсказаний Эйнштейна об отклонении света…

Как выглядят свернутые измерения?

Пример пространства Калаби—Яу показан на рис. 8.99).

Когда вы будете рассматривать этот рисунок, вы должны помнить, что ему присущи некоторые… *) В оригинале Calabi—Yau shapes. — Прим. перев. 142 Часть III. Космическая симфония Рис. 8.9.…

Таблица 10.1

Выборочные колебательные и топологические конфигурации струны, движущейся во Вселенной с радиусом R = 10 (рис. 10.3).

Колебательные вклады в энергию кратны 1/10, а топологические вклады кратны 10. В результате получаются перечисленные значения полной энергии. Единицей измерения энергии является планковская энергия, т. е., например, 10,1 в правом столбце соответствует значению 10,1, умноженному на планковскую энергию

Таблица 10.2

ких вкладов и малых колебательных вкладов: топологические вклады кратны 10, а колебательные вклады кратны 1/10. Предположим теперь, что радиус циклического измерения сужается, скажем, с 10… На первый взгляд может показаться, что таблицы совершенно различны. Но при более пристальном рассмотрении видно, что в…

Насколько общий этот вывод?

Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли все пространственное измерение (как в примерах этой главы), или… Зеркальная симметрия Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый…

Приближает ли к ответу приближение?

струны (как мы вскоре увидим, в каждой из пяти теорий струн своя константа связи).

Это название довольно наглядно: значение константы cвязи струны… Немного ниже мы обсудим вопрос об определении константы связи струны в каждой… 194 Часть IV. Теория струн и структура пространства-времени

Помогает ли это в неразрешенных вопросах теории струн?

То, что действительно появилось, — это гораздо более глубокое понимание логической структуры и исследовательского диапазона теории струн. До… 208 Часть IV. Теория струн и структура… драконов и морских чудовищ. Но сейчас мы видим, что хотя путешествие в это царство может завести нас в неизведанные…

Позволяет ли теория струн продвигаться вперед?

В качестве отправной точки рассмотрим похоже совсем несвязанный вопрос, который теоретики долбили со всех сторон с конца 1980-х гг. Математикам и… Изучая уравнения теории струн, физики осознали возможность и даже высокую… Глава 13. Черные дыры с точки зрения теории струн и М-теории 211

Насколько черно черное?

Так продолжалось до конца 1974 г., когда Хокинг обнаружил нечто совершенно поразительное. Черные дыры, объявил Хокинг, не совсем черные. Если… Глава 13. Черные дыры с точки зрения теории струн и… Расчеты очень длинны и сложны, но основная идея Хокинга проста. Как обсуждалось выше, согласно соотношению…

Ваш выход, теория струн!

Строминджер и Вафа сосредоточили внимание на так называемых экстремальных черных дырах. Такие черные дыры наделены зарядом (можно считать его… В реальном мире образование черных дыр является только одним из возможных… Сила этого подхода сразу стала очевидной. Имея в руках все рычаги управления микроскопической конструкцией черной…

Почему три?

Глава 14. Размышления о космологии 233 будет уничтожено достаточно много «резиновой ленты», и измерения смогут… Представим себе две частицы, которые катятся по одномерной линии, подобной пространственному измерению Линляндии. За…

До начала?

После этой работы физики непрерывно продвигаются вперед к пониманию струнной космологии. В числе тех, кто идет во главе этих исследований — Габриэле… Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень… Изучение струнной космологии быстро становится областью активных и продуктивных исследований. Например, сценарий…

Что является фундаментальным принципом теории струн?

Физики, как мы уже говорили, склонны придавать особое значение принципам симметрии, поднимая их на пьедестал объяснения мироустройства. С этой точки… В теории струн мы достигаем следующего уровня глубины при объяснении явлений,… Данное обсуждение со всей ясностью приводит к следующему вопросу: является ли сама теория струн необходимым следствием…

Что есть пространство и время на самом деле, и можем ли мы без них обойтись?

Мы попытались проиллюстрировать эти идеи на рис. 3.4, 3.6 и 8.10, представляя структуру пространства и пространства-времени в качестве куска… Это глубокий вопрос, который в той или иной форме был предметом дебатов в… Готфрид Лейбниц и другие шумно спорили, провозглашая, что пространство и время — всего лишь регистрационные приборы…

Приведет ли теория струн к переформулировке квантовой механики?

Это, естественно, касается и теории струн. Математический формализм, описывающий теорию струн, начинается с уравнений, описывающих движение… Стратегия, в которой сначала используется классическое теоретическое описание,… Особые основания для этого возникают при пересмотре некоторых результатов второй революции в теории суперструн…

Можно ли теорию струн проверить экспериментально?

На пути от этого общего теоретизирования к практическому воплощению есть Глава 15. Перспективы … много препятствий. В главе 9 мы описали некоторые технические преграды, которые и сегодня стоят перед нами, например,…

Существуют ли пределы познания?

Но может ли случиться так, что даже при полном понимании теории струн/М-теории в рамках новой и более прозрачной формулировки квантовой механики мы… На все эти вопросы можно сразу ответить «да». Как в свое время сказал… Удивление нашей способностью понимания Вселенной в целом легко улетучивается в век быстрого и впечатляющего…

Глава 1

2. Помимо показанных на рис. 1.1 петель (замкнутых струн), могут также существовать струны со свободными концами (так называемые открытые струны).… 3. Из письма Альберта Эйнштейна к другу. Написано в 1942 г., цитируется по… 4. Steven Weinberg, Dreams of a Final Theory. New York: Pantheon, 1992, p. 52. (Рус. пер.: Вайнберг С. Мечты об…

Глава 2

2. Если выражаться более точно, 300 000 км/с — это скорость света в вакууме. Когда свет распространяется в какой-либо среде, например в воздухе… 3. Для читателей, любящих математику, заметим, что эти наблюдения могут быть… (по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу,…

Глава 3

2. Если говорить точнее, Эйнштейн осознал, что принцип эквивалентности сохраняется до тех пор, пока наблюдения ограничены достаточно … 3. Цитируется по книге: Albrecht Folsing, Albert Einstein. New York: Viking,… 4. John Stachel, Einstein and the Rigidly Rotating Disk. Опубликовано в General Relativity and Gravitation, ed. A.…

Глава 4

2. Хотя работа Планка разрешила загадку бесконечной энергии, по всей видимости, не эта загадка была непосредственной причиной, побудившей его к… tum Discontinuity, 1894-1912. Oxford. Eng.: Clarendon, 1978. 3. Более точно, Планк показал, что волны, минимальная энергия которых превышает их ожидаемый средний энергетический…

Глава 5

2. Цитируется по книге: Timolhy Ferris, The Whole Shebang. New York: Simon & Schuster, 1997, p. 97. 3. Если вы все еще озабочены тем, как вообще что-либо может происходить в… 254 Примечания

Глава 6

2. Интервью с Джоном Шварцем, 23 декабря 1997 г. 3. Схожие предположения были независимо высказаны Тамиаки Йонея, а также… 4. Интервью с Джоном Шварцем. 23 декабря 1997 г.

Глава 7

256 Примечания 2. Если говорить более точно, спин, равный 1/2, означает, что момент… 3. Открытие и развитие понятия суперсимметрии имеет непростую историю. В дополнение к тем, кто указан в …

Глава 8

2. Как ни удивительно, физики Савас Димопулос, Нима Аркани-Хамед и Гия Двали, основываясь на более ранних догадках Игнатиоса Антониадиса и… Примечания … 3. Edwin Abbott, Flatland, Princeton: Princeton University Press, 1991. (Рус. пер.: Эббот Э. Флатляндия. М.: Амфора,…

Глава 9

2. Интервью с Эдвардом Виттеном, 11 мая 1998 г. 3. Sheldon Glashow and Paul Ginsparg, Desperately Seeking Superstrings?… 4. Sheldon Glashow. Опубликовано в The Supervorld I, ed. A. Zichichi, New York: Plenum, 1990, p. 250.

Глава 10

2. Чтобы ответить на вопрос о том, почему возможные энергии однородных колебаний равны целым кратным 1/R, достаточно лишь вспомнить обсуждение… движения струны во вселенной Садового шланга эта энергетическая единица в… 3. Математически равенство энергий струн во вселенной с радиусом циклического измерения R или 1/R есть…

Глава 11

однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот… 2. Для математически подкованного читателя отметим, что процедура включает… 3. К. С. Cole, New York Times Magazine, October 18, 1987, p. 20.

Глава 12

2. Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут… 260 … бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось…

Глава 13

2. Более точно, примерами экстремальных черных дыр являются черные дыры с минимальными для данных зарядов массами, в полной аналогии с… 3. Излучение черной дыры должно быть подобно излучению теплоты раскаленным… 4. Так как черные дыры, участвующие в конифолдных переходах с разрывом пространства, являются экстремальными,…

Глава 14

2. В обсуждении правильно передан смысл общей идеи, но опущены некоторые тонкие моменты, относящиеся к распространению света в… 262 … из нее не следует, что два фотона, движущихся по расширяющемуся пространству, должны удаляться друг от друга со…

Глава 15

2. Некоторые теоретики усматривают указание на эту идею в голографическом принципе — концепции, выдвинутой Сасскиндом и известным датским физиком… Примечания … считают, что полное понимание смысла голографического принципа и его роли в теории струн приведет к третьей революции…

Глава 5

Необходимость новой теории: общая

Versus

квантовая механика………….. 85

Суть квантовой механики………… 85

Квантовая теория поля………….. 87

Частицы-посланники…………… 89

Калибровочная симметрия………… 90

Общая теория относительности

и квантовая механика…………… 91

Часть III

Космическая симфония 95

Глава 6

Только музыка, или Суть теории

суперструн……………….. 95

Краткая история теории струн……… 96

Снова атомы в духе древних греков?….. 99

Объединение через теорию струн……. 100

Музыка теории струн…………… 102

Три следствия жестких струн………. 104

Гравитация и квантовая механика

в теории струн……………….. 106

Оглавление

Грубый ответ………………… 106

Ловкость рук?……………….. 109

Более точный ответ ……………. 110

Не только струны?…………….. 114

Глава 7

«Супер» в суперструнах……….. 115

Характер физических законов ……… 116

Спин…………………….. 118

Суперсимметрия и суперпартнеры …… 119

Доводы в пользу суперсимметрии — до появления теории струн ……….. 120

Суперсимметрия в теории струн…….. 124

Суперпроблема изобилия ………… 125

Глава 8

Измерений больше, чем видит глаз …. 127

Иллюзия привычного…………… 127

Идея Калуцы и уточнение Клейна …… 128

Взад и вперед по Садовому шлангу…… 132

Объединение в высших измерениях…… 134

Современное состояние теории Калуцы—Клейна……………… 136

Дополнительные измерения и теория струн……………….. 137

Некоторые вопросы……………. 139

Физические следствия дополнительных измерений …………………. 140

Как выглядят свернутые измерения?….. 141

Глава 9

Дымящееся ружье: экспериментальные свидетельства……………… 143

Перекрестный огонь критики………. 144

Дорога к эксперименту………….. 146

Перебирая возможности…………. 148

Суперчастицы……………….. 150

Частицы с дробным электрическим зарядом…………………… 151

Некоторые более отдаленные перспективы . 152

Оценка ситуации……………… 153

Часть IV

Теория струн и структура пространства-времени 155

Глава 10

Квантовая геометрия…………. 155

Суть римановой геометрии ……….. 156

Космологическая сцена………….. 157

Существенно новая черта ………… 158

Физические свойства намотанных струн .. 159

Спектр состояний струны………… 160

Спор двух профессоров………….. 164

Три вопроса………………… 165

Два взаимосвязанных понятия расстояния в теории струн……………….. 166

Минимальный размер…………… 167

Насколько общий этот вывод?……… 169

Зеркальная симметрия………….. 169

Физика и математика зеркальной симметрии…………………. 172

Глава 11

Разрывая ткань пространства…….. 175

Волнующая возможность…………. 177

Зеркальная перспектива …………. 178

Медленный прогресс…………… 179

Рождение стратегии……………. 180

Поздние вечера в последней обители Эйнштейна…………………. 181

О шести банках пива и работе по выходным………………… 183

Момент истины………………. 183

Подход Виттена………………. 184

Следствия………………….. 185

Глава 12

За рамками струн: в поисках М-теории . 187

Краткое изложение результатов второй революции в теории суперструн…….. 188

Приближенный метод…………… 190

Классический пример теории возмущений . 190

Использование теории возмущений в теории струн……………….. 191

Приближает ли к ответу приближение? … 193

Уравнения теории струн…………. 194

Дуальность…………………. 195

Мощь симметрии……………… 197

Дуальность в теории струн………… 199

Предварительные итоги………….. 200

Супергравитация……………… 201

Проблески М-теории…………… 202

М-теория и паутина взаимосвязей……. 204

Общая панорама……………… 205

Сюрприз в М-теории: демократия в протяжении……………….. 206

Помогает ли это в неразрешенных вопросах теории струн?………….. 207

Глава 13

Черные дыры с точки зрения теории струн и М-теории…………… 209

Черные дыры и элементарные частицы . . . 209

Позволяет ли теория струн продвигаться вперед?…………… 210

Оглавление

Убежденно разрывая ткань пространства .. 211

Шквал электронной почты ……….. 213

Снова о черных дырах и элементарных

частицах…………………… 214

«Таяние» черных дыр…………… 215

Энтропия черной дыры………….. 216

Насколько черно черное? ………… 218

Ваш выход, теория струн! ………… 220

Нераскрытые тайны черных дыр…….. 221

Глава 14

Размышления о космологии……… 224

Проверка модели Большого взрыва…… 225 От планковских времен до сотых долей секунды после Большого взрыва…….. 227

Единая теория в XXI веке 240

Глава 15

Перспективы……………… 240

Что является фундаментальным

принципом теории струн?………… 241

Что есть пространство и время на самом

деле, и можем ли мы без них обойтись? . . . 242

Приведет ли теория струн

к переформулировке квантовой механики? . 245

Можно ли теорию струн проверить

экспериментально?…………….. 246

Существуют ли пределы познания?…… 247

Достичь звезд……………….. 248

Примечания………………. 250

Словарь научных терминов……… 264

Рекомендуемая литература ……… 270

[Электронный ресурс]//URL: https://liarte.ru/diplomnaya/brayan-grin-elegantnaya-vselennaya/

Именной указатель………….. 271

Предметный указатель………… 274

Издательство УРСС

специализируется на выпуске учебной и научной литературы, в том числе монографий, журналов, трудов ученых Российской Академии наук, научно-исследовательских институтов и учебных заведений.

Уважаемые читатели! Уважаемые авторы!Перспективы  1

Основываясь на широком и плодотворном сотрудничестве с Российским фондом фундаментальных исследований и Российским гуманитарным научным фондом, мы предлагаем авторам свои услуги на выгодных экономических условиях. При этом мы берем на себя всю работу по подготовке издания — от набора, редактирования и верстки до тиражирования и распространения.

Среди вышедших и готовящихся к изданию книг мы предлагаем Вам следующие:

Классические калибровочные поля.

Арнольд В. И. Математические методы классической механики.

Современная геометрия. Т., Вглубь Вселенной. Звезды, галактики и мироздание.

Сажин М. В. Современная космология в популярном изложении.

Розенталь И.Л., Архангельская И.В. Геометрия, динамика, Вселенная. Левитан Е. П.Физика Вселенной: экскурс в проблему. Кинг А.Р. Введение в классическую звездную динамику.

Бунге М. Философия физики.

Грюнбаум А. Философские проблемы пространства и времени.

Трубецков Д. И.Введение в синергетику. Малинецкий Г. Г., Потапов А. Б. Современные проблемы нелинейной динамики. Капица С. П.,Курдюмов С. П., Малинецкий Г. Г. Синергетика и прогнозы будущего.